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ABSTRACT: The aim of this paper is to carry out a critical analysis of the uses of the 

material conditionals employed to represent the counterfactual detections taking place 

inside Elitzur-Vaidman quantum bomb detectors in so-called quantum interaction free 

measurements (IFMs). We provide an exhaustive philosophical study of this classical 

approach focusing on its limitations. To do so, we formulate atomic propositions 

corresponding to the observable events of the experiments, to overcome the shortcomings 

of the conditional expression. Finally, we show that the standard definition of 

counterfactuality in quantum contexts based on classical logic is epistemologically too 

limited, presenting quantum logics as the most promising possible approach to address this 

type of quantum counterfactuality.  

KEYWORDS: Interaction-Free measurements, counterfactuals, quantum 

mechanics, conditionals  

 

1. Introduction  

Quantum counterfactuality is an interdisciplinary field that brings together 

quantum physics, mathematics, the philosophy of physics, and logic. More recently, 

quantum computing has also entered the picture, given the potential computational 

applications of counterfactuality.1 The theoretical core of this interdisciplinary field 

originates from a thought experiment proposed by Avshalom Elitzur and Lev 

Vaidman in 1993: the so-called “quantum bomb detector problem”. The thought 

experiment raises the possibility of performing detection measurements without 

interaction with the object to be detected (“Interaction Free Measurements”, or 

IFMs). Their interest is not only relevant within the quantum computational 

community, IFMs also provide the ideal context to revisit the most intense debates 

surrounding the interpretation of quantum mechanics, and specifically the opposing 

Everett's many-worlds and orthodox or Copenhagen interpretation. This is because 

 
1 Elitzur A. & Vaidman L. (1993) have already raised the possibility of counterfactual quantum 
computing. In the following investigations stand out: Mitchison & Jozsa (2001), Mèthot & Wicker 

(2001), Azuma (2004), Hosten et al. (2006), Vaidman (2007), and Raj et al. (2019). 
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those who have proposed and developed the theoretical core, especially Vaidman 

(2018), have used the counterfactuals found in the IFM frameworks, as 

epistemological and experimental justification for the many-worlds interpretation. 

A rigorous evaluation of the issues requires a logical and philosophical 

clarification of the formalization of the process of counterfactual detection which all 

these issues revolve around (Cuesta and Sánchez-Ovcharov 2023, 333). Our aim in 

this paper is precisely to carry out such an exercise in logical and philosophical 

clarification by entering some of the main results in so-called quantum logics and 

classical semantics.   

The first part of this paper is devoted to an exposition of the operation of the 

two devices that allow us to speak of “counterfactual detections” and “measurements 

without interaction”: the Mach-Zehnder interferometer and the Elitzur-Vaidman 

bomb detector. As we shall show, the latter is based upon the former. The second 

part of the paper introduces the traditional formalization, in terms of classical logic, 

which has been given to the counterfactual detection process. Through a simple 

formal expression of two propositions articulated by a material conditional, we show 

its insufficiency. In the third and last part of the paper, we explore other approaches 

using classical connectives and their limits to build a formal articulation of all the 

processes involved in counterfactual detections. We expose the best classical 

alternatives and analyze their epistemological limits. Following on these results, we 

raise several questions on the suitability of this classical approach present in the 

current academic literature and point out some possible ways to connect quantum 

counterfactuals and study them from a logical perspective. We finally mention, in a 

nutshell, standard quantum logics based on Hilbert space lattices as the most 

promising epistemological approach to quantum counterfactuality.  

2. The Mach-Zehnder interferometer: Definition and function 

Mach-Zehnder interferometry devices (Grynberg et al. 2010) were originally 

developed to analyze phase shifts between suitably collimated light beams coming 

from the same light signal emitted at the source. This setup consists of a light signal 

source, two mirrors (M1 and M2), two detectors (D1 and D2) and two beam splitters 

(BS1 and BS2). In a quantum context this means ½ probability for the photon to be 

reflected and ½ to be transmitted. The complete device is shown in the figure below:  
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Figure 1. Schematic diagram of Mach-Zehnder interferometer: light signal (Source), two mirrors 

(M1 and M2), two detectors (D1 and D2) and two beam splitters (BS1 and BS2). 

 

When the phenomenon of reflection of the light beam takes place, either on 

the half-silvered surface of a beam splitter (BS1, BS2) or directly onto one of the 

mirrors (E1, E2), a phase shift is introduced with respect to the initial beam’s phase.2 

If we consider an incident monochromatic wave, a reflection at a beam splitter 

introduces a phase shift of π/2 in the reflected component. This phase shift must not 

be understood as a spatial displacement of λ/4, but rather as a relative phase 

difference between the transmitted and reflected amplitudes. It is precisely this 

phase relation —and not a physical path difference— that determines the 

constructive and destructive interference patterns observed at the output ports of 

the interferometer. 

Suppose that the light source is a precision device that can send photons each 

at a time.3 Hence a single photon is traveling along one of the device’s paths at any 

time. Yet, the resulting phenomenon is not as simple as it would be from a classical-

corpuscular view of the experiment. As in the famous double-slit experiment, the 

photon seems heuristically to somehow interfere with itself, as follows.  

We represent as |→⟩ in the Dirac’s notation the state of the photon traveling 

to the right or right state and as |↑⟩ the state of the photon traveling upward or 

upward state (inside the structure represented in Figure 1). This also allows us to 

introduce the standard quantum-logical algebraic approach. The origin of standard 

quantum logics due to Birkhoff and von Neumann (1936) has undergone many 

 
2 The value of the phase difference is not a big deal for the explanation at hand, besides, the phase 

difference in mirrors M1 and M2, being equal, will not affect the phase difference, and could be 

included in a global phase difference. 
3 Many of the discussions regarding whether these experiments are possible under optimal 

conditions depend upon the possibility of emitting photons one at a time. 
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developments we cannot explore here. However, most of them have emerged from 

approaches based on different non-classical semantics4 aimed at precisely capturing 

certain results or striking aspects of quantum mechanics. In the end, we will say 

something about it. Strictly speaking, standard quantum logics are in a nutshell 

nothing more than the logical interpretation of the algebra that can be generated 

from the class of linearly closed subspaces over Hilbert space (H). This structure is a 

non-distributive (i.e. non-Boolean) orthomodular lattice isomorphic to the set P(H) 

of all the projector operators defined over the Hilbert space. And the quantum-states’ 

mathematical representations (each closed subspace) are taken as quantum 
propositions (Svozil 1998). Moreover, the representation of quantum systems 

through these subspaces is precisely what we express using the bra-ket notation to 

directly denote the inner product operation on H following the standard approach.  

The photon’s successive reflections can then be represented as follows:5  

|→⟩ ⟹(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 𝑒𝑖𝜋/2|↑⟩ = 𝑖|↑⟩ ⟹(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)− |→⟩   (1) 

This expression should be read as a state evolution, whereby the initial right 

state of the photon |→⟩, undergoes a reflection, indicated by a phase shift ei𝜋/2|↑⟩, 

and thus becomes the upward state i|↑⟩, but after a second reflection returns to a 

right state |→⟩. 

|↑⟩ ⟹(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 𝑒𝑖𝜋/2|→⟩ = 𝑖|→⟩ ⟹(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)− |↑⟩   (2) 

This expression should be read as another physical evolution that takes the 

initial upward state of the photon|↑⟩ which, after reflection and phase shift, ends up 

in the upward state 𝑖|↑⟩. 

However, in the physical transmission event there is no obstacle in the 

photon’s path, and consequently no real phase shift. The photon rather seems to 

interfere somehow with itself, so that the interference detected at D1 is a 

constructive one, while that detected at D2 is destructive. This is a dramatic 

consequence of forcing classical terms as trajectory in quantum devices. To arrive at 

these conclusions, let us record the photon states in each section of the 

interferometer as a superposition of states. Here each state can be identified with a 

quantum proposition:  

 
4 For a general companion of different philosophical and technical discussions including different 

non-classical semantical approaches we remit to Dalla Chiara and Giuntini (2002); Weingartner 

(2004) and Engesser, et al. (2007).  
5 Notice that all the reflections that take place in the Mach-Zehnder interferometer produce a 

phase shift of π/2. Note also that the minus sign of the state argument in the second reflection of 

a photon coming from the light source represents a global phase that will be indifferent to us since 

it has no physical meaning. Quantum observables rely on the squared modulus of the amplitudes.  
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Photon leaving the light source:  |→⟩     (3) 

Photon after impact on BS1:      
1

√2
 (𝑖 |↑⟩ +  |→⟩)  (4) 

Photon after reflection in M1 and M2:  
1

√2
( −|→⟩ + 𝑖|↑⟩)  (5) 

Photon after impact in BS2:     −|→⟩   (6) 

|→⟩ state after BS2:     
1

√2
(|→⟩ + 𝑖|↑⟩)  (7) 

|↑⟩ state after BS2:     
1

√2
(|→⟩ + 𝑖|↑⟩)  (8) 

These characteristics of the Mach-Zehnder interferometry device are the basis 

of the Elitzur-Vaidman quantum bomb detector, which is why Vaidman (2008) 

writes that “the simplest EV device is the Mach-Zehnder interferometer”. Let us 

now look at the characteristics of the Elitzur-Vaidman device: the so-called quantum 
bomb detector. This will introduce the quantum counterfactuals.  

3. The Elitzur-Vaidman bomb detector: interaction free measurements (IFMs) and 

counterfactuals 

The so-called Elitzur-Vaidman quantum bomb tester (Elitzur & Vaidman, 1993) 

only adds one structural element to the Mach-Zehnder interferometer, an opaque 

object, e.g., a bomb, which goes off when a photon, incident at BS1 and traveling 

down the M1 path of the interferometer, strikes it. This minimal modification at the 

assembly level causes the interference pattern to be lost, again in analogy to the 

famous double-slit experiment.  

Diagrammatically, the EV device can be represented as follows:  

 
Figure 2. Schematic representation of the Elitzur-Vaidman bomb tester: light signal source, mirrors 

M1 and M2, detectors D1 and D2, beam splitters BS1 and BS2, and an opaque object, the bomb. 
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The recording of the successive photon states are the same as in the Mach-

Zehnder interferometer, except for a new state for the photon, called |𝑏𝑜𝑜𝑚⟩. This 

represents the state when it hits the bomb located between BS1 and M1 and the 

bomb explodes. We reformulate the paths and propositions for the EV detector as 

follows:  

Before BS1:   |→⟩     (9) 

After BS1:   
1

√2
 (|→⟩ +  𝑖 |→⟩)    (10) 

After M1 and M2:  
1

√2
 (|𝑏𝑜𝑜𝑚⟩ − |→⟩)   (11) 

After BS2:   
1

√2
|𝑏𝑜𝑜𝑚⟩ −

1

2
|→⟩ −

𝑖

2
|↑⟩   (12) 

If we pay attention to the photon’s states after passing through BS2, in terms 

of (12), we can determine the three probabilities corresponding to the three possible 

outcomes as follows:  

Probability of achieving |𝑏𝑜𝑜𝑚⟩:     |
1

√2
|

2
=

1

2
     (13) 

Probability of achieving |→⟩:            |−
1

2
|

2
=

1

4
     (14) 

Probability of achieving |↑⟩:              |
𝑖

2
|

2
=

1

4
     (15) 

From Born’s rule we obtain the standard Elitzur-Vaidman probabilities for an 

ideal 50/50 interferometer: ½ for explosion, ¼ for detection at D1, and ¼ for 

detection at D2. Crucially, the ¼ probability at D1 is not an interferential effect: the 

presence of the bomb destroys the phase coherence between the arms, so the 

amplitudes reaching BS2 do not interfere. The port D2 therefore becomes the only 

genuinely interferential signature of the device, and its non-zero probability is what 

allows interaction-free detection. 

Note, therefore, that the last probability for a final upward state of the photon 

has changed, relative to the simpler MZ set up, where the bomb is absent. Thus, we 

can conclude that the presence of the opaque object (bomb) entails a ¼ probability 

of detecting its presence, without any apparent interaction with it —since there has 

been no explosion at all.6 

 
6 A distinction is usually made between the detection of the existence of an opaque object sensitive 

to contact with a photon and a bomb whose action device is triggered by a photon detector. Here 

we choose to treat the opaque object as functionally indistinguishable from a photon contact-

sensitive bomb. Eliztur and Vaidman claim that “in one respect the experiment which tests a bomb 

without exploding it is easier than the experiment of testing the existence of an object in a given 

place without touching it” since “it is possible to obtain certain information about a region in space 
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Note that we may also remove detector D1, thus leaving the experiment with 

only two structural elements —bomb and D2—, but with no consequence for our 

chosen formal representation of the device. The reason is that the photon traveling 

along the path to D1 is recoverable for the photon source since it is sufficient to close 

the circuit between D1 and the photon source, as follows: 

 
Figure 3. Schematic diagram of Elitzur-Vaidman bomb tester with one detector (D2). 

 

The case in which the photon does not appear to interact with the bomb,7 

there is no explosion, and the photon is subsequently detected at D2, is known as 

interaction free measurement (IFM).8 It is so named because it allows us to 

determine the presence of the bomb in the device, without exploding it —i.e. a 

counterfactual detection.   

4. Traditional formalization of the counterfactual detection process 

The objective of the Elitzur-Vaidman device is to determine the presence of a bomb 

in a counterfactual manner —that is, by detecting its existence without triggering 

 
without any interaction in that region neither in the past nor at present”.  
7 The conditions and terms under which this interaction occurs give rise to discussions on 

interpretations of quantum mechanics, which are beyond the scope of the present work. We use 

the terms “appear” and “apparent” to remain neutral with respect to such discussions for the time 

being. Omitting it may give rise to a tacit acceptance of Everett’s Many-worlds interpretation, to 

which Vaidman himself subscribes. There is no local interaction of any kind in the actual world. 

The interaction takes place in that possible world in which the bomb would, in fact, explode.   
8 See Elitzur and Vaidman (1993), Vaidman (1994, 2003, 2008, 2018, 2019), Penrose (1994), Kwiat 

et al. (1995) and Mitchison & Jozsa (2001).  
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an explosion. The answer is obtained by detecting the presence of the bomb without 

exploding it. And the threads that are involved in this detection are collected in the 

following flowchart:    

 
Figure 4: Counterfactual detection procedures represented in a flow diagram. A dotted line 

shows the ‘counterfactual’ detection procedure, while the solid lines show ‘actual’ ones. 

 

As we shall see, Figure 4 represents not only the three possible results (bomb’s 

explosion, D2’s detection and D1’s detection), but also their logical relationship with 

respect to the overall functioning of the detection procedure.  

5. Logical approaches to the counterfactual detection procedures  

In philosophy of logic, “counterfactual” usually refers, in the first instance, to the 

conditional proposed by Stalnaker (1968), whose semantic proposal was later 

developed by Lewis (1973). Suffice it to note, for the time being, that the notion of 

“counterfactual” proposed by these two authors is framed within a modal approach 

that is usually related with mainstream modal semantics. Their purpose does not 

differ, at least in spirit, from the motivation behind using strict conditionals to model 

every-day conditional inferences, relevant implications, Cooper’s paradoxes, and 

similar phenomena. Obviously, none of these counterfactuals were developed in 

response to the need to formalize IFMs.  

They have nothing to do with the characterization of counterfactuals —not 

as mere speculative or conditional informal inferences, but as physical phenomena. 

It is true that some indirect connections have been drawn. While Lewis himself 

explicitly linked his semantics for counterfactuals to a multiplicity of real possible 

worlds9, and recent works have related this formalism to many-worlds 

 
9 Lewis (1993) proposed a realism which, on the other hand, is very hard to uphold after 
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interpretations, we do not consider this kind of modal realism either necessary or 

appropriate for an initial philosophical approach to IFMs. 

Secondly, Vaidman and Elitzur, among others, have also framed their results 

within the broader set of possible arguments supporting realist quantum 

interpretations. However, our primary interest here is to characterize IFMs as 

neutrally as possible. Once we adopt the standard quantum-logical approach and 

Hilbert space notation, this task becomes particularly demanding. 

It is, moreover, quite common in the philosophical literature to understand 

counterfactuals in the strongest “classical” sense of the term —that is, as the 

subjunctive form of material implication, as follows. Consider the interpretation of 

natural language that requires a subjunctive mode: “If it were the case that ‘p’, then 

it would be the case that ‘q’,” where it is implicitly asserted that, in fact, neither ‘p’ 

nor ‘q’ holds. Formally, this is typically represented as: (𝑝 →  𝑞) Ù (¬𝑝 Ù ¬𝑞). This 

conception of counterfactuals as subjunctive or hypothetical traces back to 

Aristotelian and Megaric-Stoic dialectics (Cuesta 2021), becomes widespread in 

scholastic discussions, and gains prominence among modern philosophers —

especially after Wolff and Kant. 

And this the one that has been applied to IFMs. This is the conception that 

has been taken to hold between the interaction of the photon with the bomb and its 

explosion, even when there is, in fact, neither impact nor explosion. 

Cuesta and Sánchez-Ovcharov (2023) point out that this approximation 

suffers from a deficiency intrinsic to the formalism itself: a statement of the type 
(𝑝 →  𝑞) Ù (¬𝑝 Ù ¬𝑞) simply expresses a formal logical relation, in which it is 

shown that a conditional (any) will be true even if antecedent and consequent are 

false. To overcome this limitation, they introduce a distinction between informative 

and non-informative counterfactual results, which demand caution when qualifying 

a result as properly counterfactual. The isolated hypothetical conditional will in no 

case be sufficient to distinguish between informative and non-informative 

counterfactual statements. And both Mitchison and Jozsa (2001), as well as Cuesta 

and Sánchez-Ovcharov (2023) when referring to informative counterfactual results, 

understand that counterfactual detection is nothing else than “a detection which 

results from a procedure represented by a true counterfactual conditional”. 

 

 
incorporating the interpreted Elitzur-Vaidman results. 
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6. Analysis of the conventional formalization: the subjunctive or hypothetical 

conditional  

As we have already mentioned, the most widespread formalization of the 

counterfactual detection process has been carried out in classical logic by means of 

the classical conditional: 𝑝 → 𝑞. Here, propositions p and q simply stand for “photon 

interacts with the bomb” and “the bomb explodes”, respectively. In the 

counterfactual detection process it is commonly taken that the truth values for both, 

p and q, are 0 or false. This means that p as well as q are false propositions while the 

conditional remains true (Kwiat et al. 1995; Vaidman 2003; Cuesta and Sánchez-

Ovcharov 2023) as in the classical truth-table in table 1.   

 p q 𝑝 → 𝑞 

i1 1 1 1 

i2 1 0 0 

i3 0 1 1 

i4 0 0 1 

Table 1: Corresponding to the conditional. The interpretation of the conditional called 

counterfactual, hypothetical or subjunctive is highlighted. 

 

Vaidman (2003, 495) introduces this conditional by pointing out that “simple 

logic tells us: given that any interaction leads to an explosion and given that there 

has been no explosion, it follows that there has been no interaction”. This reasoning 

can be formalized with a modus tollens in “simple [classical] logic” as follows —

where p is “the photon interacts with the bomb” and q “the bomb explodes”: 

𝑝 → 𝑞 , ¬𝑞  ⊢  ¬𝑝        (16) 

Thus, the conditional is included as a premise, i.e., taking it as true —

specifically in that case in which it is true, but the antecedent and consequent are 

both false (i4). The logical validity of this argument implicitly requires an 

equivalence principle,10 namely the rule of the contraposition of the conditional, 

formally defined as follows: 

𝑝 → 𝑞  ≡   ¬𝑞 → ¬𝑝        (17) 

Where we have used the metalogical symbol, ≡, to represent the relation of 

logical equivalence. According to this logical rule, the truth of a conditional implies 

the truth of its contrapositive and vice versa. 

 
10 This equivalence principle can be alternatively regarded as a logical law or a rule of inference; 

the difference is not relevant for our purposes. 
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Bearing this in mind, we are already able to see that i4 is insufficient to 

represent counterfactual detection processes. The problem is not that the conditional 

collapses to i4, but that i4 alone does not track any of the physical distinctions 

relevant to the experiment. The classical conditional simply assigns the value 1 

whenever both antecedent and consequent are false, but this semantic fact does not 

correspond to any physical process occurring inside the interferometer. Therefore, 

the material conditional cannot distinguish between genuine interaction-free 

detection and mere logical vacuity. 

The two conditionals in (17) are only equivalent by virtue of formalizing the 

same proposition and, ultimately, the same conditional events. If we assume that the 

expression “𝑝 ⟶ 𝑞”stands for the event that “if the photon impacts, then the bomb 

explodes”, then “¬𝑞 ⟶ ¬𝑝”, by definition, will necessarily only formalize the same 

fact. But, even if we disregarded the equivalence between the conditional and its 

contrapositive —which Vaidman fails to do—, i4 is still not sufficient to formalize 

counterfactual detection processes.  

First, to avoid confusion, we reject the term “counterfactual conditional” for 

the interpretation of the conditional in which both, the antecedent and the 

consequent, are false. We instead call it, on the grounds of what has just been 

explained, simply “i4” or just “classical logical counterfactual”. We conjecture that 

the use of the name “counterfactual” for this interpretation of the conditional may 

have led to the mistaken identification of two different types of “counterfactuality”. 

One of them refers to the formal interpretation of the logical definition of the 

conditional: the classical one. The other refers to the empirical detection of an object 

—the bomb— without any interaction with it: the quantum one. It seems that this 

misidentification may have led to the failure of the formalization of the process of 

counterfactual detection by means of a single conditional.  

Secondly, i4 does not allow us to study the mathematical and physical events 

that make the conditional true. On the one hand, calling this interpretation 

“counterfactual” would have no more implications than calling it “i4” or “Alice”. It 

would be a mere question of nomenclature. On the other hand, justifying it on the 

grounds that the counterfactual relies on the assumption that neither the antecedent 

nor the consequent are in fact given —they are false— but the conditional is 

nonetheless true, seems to be an illegitimate extra-logical leap, based on an 

extrapolation from a logical form to an empirical result.  

Let us use an example to illustrate the impossibility of formalizing IFMs by 

means of i4 only. We simplify the original thought experiment as follows: we have 

a black box in which there might be a bomb, and we want to determine if there is 
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one. We can only do so by opening the box and looking inside.11 We can express the 

situation in conditional terms as follows: “if I open the box, then I will detect if there 

is a bomb inside”. Whereby we understand “I will detect” in both senses: either “I 

will detect that there is a bomb” or “I will detect that there is no bomb”. Formally, 

“𝑝 ⟶ 𝑞”with p as “I open the box”, and q as “I will notice that there is a bomb”.  

Now take i4. We have a conditional that is true when, in fact, we have not 

opened the box 𝑣(𝑝) = 0 , and in fact, we have not detected a bomb, 𝑣(𝑞) = 0. To 

claim that, due to the conditional being true under i4, we have truthfully determined 

or ascertained something counterfactually concerning the bomb or the box is simply 

to commit a category mistake. We have determined nothing either factually, nor 

counterfactually. Only the formal truth of the conditional 𝑝 ⟶ 𝑞 has been 

maintained. This is what we earlier referred to as an extra-logical leap: an 

extrapolation from the truth of a logical form to the truth of an empirical event. 

Delving a little further into it, the conditional itself, in any of its interpretations, 

neither affirms nor confirms any fact about the material content of its terms. It only 

establishes the formal truth about a formal expression of a hypothetical nature. In 

this sense, in the case of i1, when we have opened the box and have detected the 

presence of the bomb —because it has exploded— or we have just detected that the 

box is empty, in this case also the conditional has a truth value 1 —as in i4. But, in 

addition we have factually determined that there is/is not a bomb in the box, and we 

have transformed the hypothetical matter into a factual issue. Now it seems clear 

that the presumed counterfactuality, derived from the extra-logical leap, has nothing 

to do with that obtained in IFMs because in IFMs a counterfactual detection is, in 
fact, obtained.  

What the conditional “𝑝 → 𝑞” seems to offer is rather, at best, a functional 
definition of the Elitzur-Vaidman bomb itself, so that each of its interpretations 

corresponds to a formal description of the different material possibilities of the 

experiment (Table 2): 

 p q 𝒑 → 𝒒 Material possibilities of the experiment 

i1 1 1 1 Photon impacts | Bomb explodes 

i2 1 0 0 Photon impacts | Bomb does not explode 

i3 0 1 1 Photon does not impact | Bomb explodes 

i4 0 0 1 
Photon does not impact | Bomb does not 

explode 

Table 2. Material possibilities of the Elitzur-Vaidman bomb detector. 

 
11 For the analogy to be complete, we can add that, if we open the box, and there is a bomb, it will 

explode, but this is an unnecessary complication in this setting. 



Quantum Counterfactuals: Interaction-Free Measurements and Classical Logic’s Constraints 

467 

We may consider whether this conditional is a correct formalization of the 

bomb’s design: a device such that if a photon, p, hits it, then the bomb explodes, q. 

But it is necessary to realize that even this definition is incomplete. 

The logical form of the conditional includes an interpretation, i3, 𝑝 → 𝑞 ∶

𝑣(𝑝) = 0 𝑦 𝑣(𝑞) = 1, which we will reject since it is not applicable to our 

experiment as described with all its parameters under control. This interpretation 

would ultimately model at the very most a faulty bomb or failure due to e.g. external 

causes to the experiment, making it no longer ideal —or not an interpretation at all. 

By removing i3 we rule out events such as: the deterioration of the pump, that it 

interacts with a photon not coming from our light source (even one outside our 

laboratory), that the laboratory technician trips over and makes it explode, or that it 

is simply stored incorrectly so that due to wear and tear of the insulating material 

over the years, the pump ends up exploding. These are all trivial cases but cannot 

apply to our set up. 

In the logically significant ideal experiment —under controlled parameters, 

i.e., a laboratory with a perfect experimental setup, without failures— the i3 

interpretation is inapplicable. That is why we propose —on the principle of 

charity— to distinguish two definitions of photon-sensitive bomb: one outside the 

laboratory described in the thought experiment (where i3 may be possible) and one 

inside the laboratory as described (where i3 is simply inapplicable). Inside our 

laboratory, the bomb is, by definition, a device which in fact explodes only when 

the photon —coming from our light source— impacts on it. Under no other 

circumstances does it explode. 

This answers better to a biconditional: the bomb explodes if, and only if, our 

photon impacts on it (𝑝 ⟷ 𝑞) where i3 is removed as a possibility, and all possible 

interpretations are listed in the following table (Table 3):   

 p q 𝑝 ⟷ 𝑞 POSSIBILITY 

i1 1 1 1 
Possible 
(The events p and q occur) 

i2 1 0 0 Impossible 

i3 0 1 0 Inapplicable 

i4 0 0 1 
Possible 
(The events p and q do not occur) 

Table 3. Definition of the bomb inside the laboratory through a biconditional. 

 

However, we have not formally defined the counterfactual detection that 

takes place in IFMs yet. We must recall that the counterfactual we are looking for is 

that the bomb does not explode and that our photon is detected in D2. Thus, we 

must rule out also the option i1. To do so, we must include the key fact of the photon 
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detection in D2. This leads us to the restatement of the counterfactual detection in 

this experiment.  

We name counterfactual detection the combination of two complex events 

reflected in the following molecular propositions:  

A. No photon impact on bomb, no bomb explosion;12 

B. Photon reflection at BS2, photon detection in D2.  

Only the combination of both molecular sentences expresses that a 

counterfactual detection of the bomb has taken place in the quantum sense. In that 

combination, the formula 𝑝 ⟷ 𝑞 can maybe characterize the operation of the bomb 

as some kind of definition. It is now necessary to formally include proposition B: 

“the photon reflected in BS2 impacts on D2”. This is the data that will allow us to 

claim that there is an actual bomb inside the device —on which the photon has not 

impacted, and which has not exploded, i.e., i4. In other words, proposition B 

excludes possibility i1. 

7. Classical Logic’s Constraints  

7.1. Counterfactual detection as a relation between two biconditionals   

In accordance with the foregoing, we offer a more complete definition of 

counterfactual detection, as that quantum-mechanical procedure that serves to 

determine —given detection in D2, after reflection in BS2— the effective detection 

of an object that would explode when interacting with a photon, while the object 

does not actually explode. Consequently, the formalization of counterfactual 

detection must include some connection of proposition A —represented by the 

biconditional 𝑝 ⟷ 𝑞, in i4— with the formalization of proposition B.  

Taking r as “the photon is reflected in BS2” and s as “the photon is detected in 

D2” we can formalize the sentence “the photon is detected in D2 if it is reflected in 

BS2” as another biconditional, expressing B as r ⟷ s. 

The reasons why we take the biconditional r ⟷ s instead of the simple 

conditional 𝑟 → 𝑠 are the same as before with 𝑝 ⟷  𝑞, namely: we stick to an 

experiment performed in a laboratory with all parameters ideally controlled so that 

the detector D2 cannot signal the detection of a photon if this photon has not 

previously been reflected in BS2. And it can only be reflected in BS2 if it comes from 

our light source, under some ideal conditions inside the laboratory.  

 
12 It must be noted that this proposition contains two negations by virtue of the fact we are 

considering the biconditional in the interpretation i4.  
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As counterfactuality requires a connection between two biconditionals, we 

need some connection between them expressed as: 

(𝑝 ⟷ 𝑞) 𝑐𝑜𝑛𝑛 (𝑟 ⟷ 𝑠)      (18) 

which is the extended expression of the semantic relation between propositions A 

(𝑝 ⟷ 𝑞 in i4) and B (𝑟 ⟷ 𝑠 in i1), i.e. “𝐴 𝑐𝑜𝑛𝑛 𝐵”. 

We proceed to reformulate the IFMs flowchart in Figure 5 including the 

modifications discussed so far: 

 

 
Figure 5. This figure represents diagrammatically the truth table of the biconditionals: 

𝐴: (𝑝 ⟷ 𝑞) 𝑎𝑛𝑑 𝐵: (𝑟 ⟷ 𝑠), and their relation in the counterfactual detection process. 

 

Next, we will elucidate what the connection between A and B may consist of. 

7.2. Analyzing classical connectives as “𝒄𝒐𝒏𝒏” and their limits 

In the following, we inquire into whether the counterfactual detection expressed in 

the terms of formula (18) can be included in a propositional language by introducing 

a connective to represent the relation we are looking for. We can rule out, in 

advance, a monadic connective (negation) which could satisfactorily formalize such 

a relation, since it connects two molecular propositions. In the classical propositional 

logic, we can define all possible connectives as possible syntactical relevant (non-

repeated and well-formed) combination of truth values of each 22 (bivalent dyadic) 

combinations. We will have then that the total number of so-called connectives is 

16. And we can represent all in a single truth table as in Table 4.  
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A B ⊤ ∨ ← A → B ↔ ∧ ↑ ⊻ ~A ↛ ~B ↚ ↓ ⊥ 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

Table 4: Configuration of all possible non-trivial connectives that can be defined in a bivalent 

classic calculus. 

 

And from all the logical possibilities reflected in this table we want to focus 

only in those cases valid for those interpretations in which 𝑣(𝐴) = 1 and 𝑣(𝐵) = 1 

and, furthermore, (𝐴 𝑐𝑜𝑛𝑛 𝐵) = 1. Let us look at the columns and see why the 

different connectives cannot replace “conn” without loss of relevant information: 

(1) The first and last (1 and 16) columns must be ruled out since logical validities 

(⊤) and invalid formulas (⊥) cannot replace the relation we want. In classical 

logic, as pointed out by Wittgenstein in his Tractatus Logico-Philosophicus 
(4.461), tautologies and contradictions don’t add any relevant information.  

(2) The second and tenth columns are the so-called inclusive (∨) and exclusive (⊻) 

disjunctions, respectively.  

(3) The exclusive disjunction asserts that the two formulas to be related do not bear 

any kind of semantical relation in their models and, therefore, could even be 

assumed to be equivalent to an absence of connection: “conn”. This is because 

they cannot be true simultaneously under this logical operation. Inclusive 

disjunction, on the other hand, raises the problem of allowing only one of the 

two biconditionals to be true while the other is false, even though this need not 

necessarily be the case. Similarly, columns eleven and thirteen must be 

eliminated. This is because they exclude one of the two terms, equivalent to the 

negations of the formulas to be related, in all their interpretations. Thus, the 

connectives defined by columns four and six (numbers 4 and 6) that exclude 

the other formula, stating only the interpretation of one —that is, being 

logically equivalent to it— should be deleted for the same reason. 

(4) The Sheffer (↑) and the Peirce (↓) strokes are removed for the same reasons 

relating to their monadic character, as well as for being false in the case in 

which both biconditionals are true —an obviously indispensable requirement. 

With the latter requirement, we may also discard column twelve (12) or 

abjunction (↛) and column fourteen (14) or converse abjunction (↚). 

(5) The conditional (→), in the fifth column (5), raises the same problems reviewed 

in the previous section, as well as new problems. If we take “conn” as a 
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conditional, the resulting formula will be true even if, for example, both 

biconditionals are false —which is not an interpretation consistent with 

IFMs—, as well as when biconditional A corresponding to the definition of the 

bomb is false while B is true. Remember this was the original proposal.  

(6) The converse conditional (←), third column (3), cannot be the connection 

because it allows (i) that A holds and B does not, and (ii) that A and B are both 

false, making it impossible in each case to formalize the facts involved in 

counterfactual detection through D2. And the biconditional (↔), seventh 

column (7), cannot be the connection “conn” because it allows A and B to be 

false, making it impossible, again, to formalize of the events involved in the 

counterfactual detection through D2.  

(7) Finally, the one remaining option is the conjunction (∧) in column eight (8). In 

this case we will have that biconditionals A and B will only be connected when 

both are true —and in no other circumstances. 

Let us examine the latter possibility a little more closely. We have established 

that, in counterfactual detection, at least four events are related: 

p: “Photon impact on bomb”. This event should not occur.  

q: “Bomb explosion”. This event should not occur.  

r: “Photon reflection at BS2”. This event should occur.  

s: “Photon detection at D2”. This event should occur.  

We have defended that these events (p with q and r with s), as circumscribed 

to ideal laboratory conditions, have a relationship of sufficiency and necessity: 

A: It is sufficient and necessary that p (impact of the photon on the bomb) for q 
(explosion of the bomb), and vice versa. 

B: It is sufficient and necessary that r (reflection of the photon by BS2) for s 
(detection of the photon in D2) and vice versa.  

But these relations of sufficiency and necessity can’t be properly formalized 

through any classical connective, even the conditional as relevance paradoxes show 

(note that classical conditional captures a more relaxed relation). The only possible 

way will be to use a biconditional to ensure from right to left and vice versa that it 

is logically impossible to obtain p without q nor r without s. So we write: 

A: (𝑝 ⟷ 𝑞) 

B: (𝑟 ⟷ 𝑠) 

Then, we must recall that, for counterfactual detection to occur, the events 

involved in A must not have occurred, while those involved in B must have 

occurred. This, as we have already seen, can be registered through the line of 
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interpretation of the truth table of the biconditional, which reflects this 

occurrence/non-occurrence of the events: 

A: (𝑝 ⟷ 𝑞), should be adopted by i4: v(p)=0, v(q)=0. 

B: (𝑟 ⟷ 𝑠), should be adopted by i1: v(r)=1, v(s)=1. 

Nevertheless, it remains to represent formally that, in the counterfactual 

detection, the two molecular events must occur: A must arise in i4 and B must arise 

in i1, and none of the options reviewed in the previous sections, relative to other 

logical connectives different from the conjunction, can arise. Any other relation that 

arose between A and B, in any other interpretation, would correspond to an 

experimental situation other than counterfactual detection. Consequently, we can 

take the step of formalizing (𝑝 ⟷ 𝑞) 𝑐𝑜𝑛𝑛 (𝑟 ⟷ 𝑠) as follows: 

(𝑝 ⟷ 𝑞) ʌ (𝑟 ⟷ 𝑠)        (19) 

However, we have not yet formally expressed all that is involved in 

counterfactual detection: the formula (19) does not allow us to discern whether the 

events involved in 𝑝 ⟷ 𝑞 and those involved in (𝑟 ⟷ 𝑠)  occur or do not occur. In 

other words, in (19) we do not know which of these two alternatives obtains: 

(𝑝 ⟷ 𝑞 ) ʌ (𝑟 ⟷ 𝑠):   𝑣(𝑝) = 0, 𝑣(𝑞) = 0, 𝑣(𝑟) = 1, 𝑣(𝑠) = 1  (20 a) 

(𝑝 ⟷ 𝑞 ) ʌ (𝑟 ⟷ 𝑠):   𝑣(𝑝) = 1, 𝑣(𝑞) = 1, 𝑣(𝑟) = 0, 𝑣(𝑠) = 0  (20 b) 

We should note that we have discarded the other combinations of truth 

values, since the experiment takes place under ideal laboratory conditions (see Table 

3). And also that, in fact we are modeling here states of knowledge of quantum 

results.  

But then we can notice that this is the same as simply asserting the truth 

interpretations of every propositional letter directly as  

(𝑝  ʌ  𝑞) ʌ (¬𝑟 ʌ ¬ 𝑠)       (21) 

Which is nothing but the repeated definition formalized completely ad hoc 

stipulated without any kind of generality capable to be implemented in a general 

framework.  

Moreover, we would still have to capture the simultaneously impossibility of 

getting an explosion and a detection in D2. This means we need to add an exclusive 

disjunction between q and s until obtain:  

((𝑝  ʌ  𝑞) ʌ (¬𝑟 ʌ ¬ 𝑠))ʌ (𝑞 ⊻  𝑠)      (22) 

And with this we can indicate that (i) Either the event q (“bomb explosion”) 

obtains, and then only the first of the disjuncts, q, is true or else (ii) event s 
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(“detection in D2”) occurs. The latter situation corresponds to the events involved 

in counterfactual detection, so we can try to reduce the counterfactual detection to 

this case but then the logical approach collapses. The ideal of use biconditionals and 

affirm something like [(𝑝 ⟷ 𝑞) ʌ (𝑟 ⟷ 𝑠)] ʌ (𝑠) keeping the exclusive disjunction 

will face the interpretations in which the first biconditional is true because both p 
and q are false and the second one having r and s both true. Indeed, if we try to 

maintain the truth of s then we must interpret the second biconditional in this 

precisely case and this has no physical meaning here.  

Classical logical connectives, therefore, exhibit a clear intrinsic limitation 

when attempting to model the notion of quantum counterfactuality. The main issue 

is that previous treatments in the literature have assumed the material conditional 

to be an adequate connective for approaching this concept. However, propositional 

logic only captures various relations between possible logical values and operations 

on propositions, allowing for different interpretations, such as logical possible 

worlds, where we intend to precisely situate them. Quantum counterfactuality, 

however, is qualitatively distinct from classical counterfactuality, in which one 

might claim, at best, that a conditional is true even when both terms it connects are 

false. And classical logic presents a clear limitation as an epistemological tool when 

approaching its modeling. 

Therefore, contrary to the usual proposals we have analyzed, it seems relevant 

to conduct an analysis of quantum counterfactuality based on standard quantum 

logics. As we mentioned at the outset, these logics are nothing more than the logical 

interpretation of the algebra underlying the set of linearly closed subspaces of a 

Hilbert space, which forms a non-distributive lattice. This suggests that the shift 

towards quantum logics is, in all respects, a natural one. And it is precisely the partial 

order relation of this lattice that serves as the foundation for defining a quantum 

conditional. Moreover, the extensive literature in logic and philosophy of logic 

regarding the proper semantic characterization of this conditional provides us with 

valuable tools to address quantum counterfactuality within the Hilbert space 

formalism. 

Additionally, (i) the fact that we can define the four atomic propositional 

elements necessary for the correct modeling of Interaction-Free Measurement (IFM) 

in terms of systems and system interactions (under operators) with four systems 

represented over subspaces on H, as well as (ii) the possibility of modeling the 

evolution of the entire system within the quantum lattice itself, seem to indicate 

(alongside the complete failure of classical logic to model this notion of 

counterfactuality) the necessity of shifting our study to quantum logics. 
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This shift will not only clarify the logical relations between the elements we 

need to consider but will also allow us to connect debates across different domains: 

philosophical (concerning the status of quantum logics and their relation to certain 

realist interpretations that, as we have seen, use quantum counterfactuality as an 

argument), logical (providing an opportunity to apply quantum logics to a new 

experiment and, in doing so, refining the notion of conditionality through 

counterfactuality itself), and computational (bridging the approach based on 

quantum logics and the Hilbert space formalism, linking algebraic logical results 

with quantum logic gates and the characterization of the interferometer as a 

quantum circuit). In the lattice of closed subspaces of a Hilbert space, propositions 

behave not as truth-valued sentences but as operators whose meet and join reflect 

the physical compatibility relations between observables. This non-distributive 

structure allows the formalism to represent interference, phase relations and 

counterfactual paths in a way that no classical connective can reproduce. 

8. Concluding remarks 

In this paper we have shown that the counterfactual conditional (as merely 

subjunctive) is insufficient to represent the quantum counterfactual detections that 

obtain in IFMs. We cannot formalize them using propositional logic through a 

connective privileging one interpretation (i4) over the rest. But this constraint, 

moreover, is not overcome by the ad hoc incorporation of new connectives labeled 

“quantum” based on a classical calculus. Either we relate two propositions through a 

conditional, or we do not, but limiting their connection to a concrete interpretation 

of the conditional implies an a posteriori approach. This does not yield an adequate 

formalism yet. Moreover, to qualify the interpretation i4 so as to be able to transform 

it into another expression that represents the particular truth values of p and q as 0 

returns logically equivalent (substitutable) expressions without any physical 

interpretation.  

The quantum counterfactual detection process involves at least four items (p, 

q, r, s) we have successfully identified. We have studied some alternative, more 

complex formulas, that could formalize the relations of sufficiency and necessity 

existing between the pairs of facts (p, q) and (r, s), through the biconditional. But 

they also failed due to the excess of semantic ad hoc restrictions imposed. At this 

point we must, point out that the best classical alternatives still suffer from serious 

limitations. They do not represent the probabilities of occurrence of the different 

observables since it cannot quantify or weight the states |𝑏𝑜𝑜𝑚⟩ and |𝐷2⟩. So, it does 

not capture the quantum mechanical reasons why the counterfactual detection 

occurs. Secondly, it may be thought to be an ad hoc formalization that: (i) does not 
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generalize into a formal structure capable of accounting for the functioning of the 

mechanism, (ii) does not provide a comprehensive approach through the quantum-

mechanical formalism involved, (iii) is not obviously computable. Our analysis 

indicates that classical propositional logic is insufficient —though not wholly 

useless— for modelling interaction-free measurements. It captures certain idealized 

causal dependencies but fails to represent the genuinely quantum correlations and 

probability structures on which the phenomenon relies. For a complete treatment, 

a non-Boolean framework such as standard quantum logics appears necessary. 

First, in the presentation of the experiment itself, and finally, after analyzing 

all the limitations of classical logic, standardly defined quantum logics within the 

Hilbert space formalism appear to be the most promising formal tool for addressing 

quantum counterfactuality. Moreover, as we have just mentioned, one of the most 

critical limitations of classical logical analysis is its inability to connect with the 

quantum inferential processes, specifically those of quantum probability, that are 

necessary in this context and crucial for modeling what occurs in the bomb detector. 

Thus, IFMs provide a unique testbed where physical, logical and philosophical 

considerations converge: the physics demands a non-Boolean structure; the logic 

must capture non-classical relations of dependence; and the philosophical analysis 

clarifies how counterfactual reasoning should be reconceived in quantum contexts. 

This confluence highlights the need for a unified framework and suggests that 

quantum logics provide precisely the level of generality required. 

Quantum logics, being a natural lattice-theoretic interpretation of the algebra 

isomorphic to the space defined by projection operators on Hilbert space, allow for 

this connection in a completely natural and automatic manner. Additionally, we 

have also seen that quantum logics facilitate an exploration of a novel relationship 

between (i) philosophical debates related both to interpretations of quantum 

mechanics (where IFMs are used as cases to construct arguments in favor of certain 

many-worlds-type interpretations) and to the very concept of physical 

counterfactuality, (ii) discussions in the philosophy of logic concerning the 

formalism of quantum logic itself, and (iii) debates in computational contexts, given 

that quantum logics provide a natural formalism for linking the bomb detector 

experiment to its definition as a quantum circuit. 

Nevertheless, the epistemological limitations of classical logical connectives 

in this context could serve as a foundation for a future critique of all those quantum-

logical calculi which take propositional logic as a basis and classical connectives —

especially the conjunction and the conditional— with the same truth table to 

generate descriptions of quantum mechanical states. What is needed is a more 

general formalism, one that fits the quantum interpretation of the interferometer, 
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not as a mere matter of nomenclature, akin to a simple formal exercise in modeling 

sentences in natural language in propositional logic but going way beyond in fully 

describing the physics of the MZ interferometer. However, even though we do not 

yet possess it, having explored the limitations of the classical approach taken thus 

far allows us to explicitly identify the necessary ingredients, recognize how quantum 

logics emerge as the most promising framework, and highlight the next steps to be 

taken.13 
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