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ABSTRACT: The aim of this paper is to carry out a critical analysis of the uses of the
material conditionals employed to represent the counterfactual detections taking place
inside Elitzur-Vaidman quantum bomb detectors in so-called quantum interaction free
measurements (IFMs). We provide an exhaustive philosophical study of this classical
approach focusing on its limitations. To do so, we formulate atomic propositions
corresponding to the observable events of the experiments, to overcome the shortcomings
of the conditional expression. Finally, we show that the standard definition of
counterfactuality in quantum contexts based on classical logic is epistemologically too
limited, presenting quantum logics as the most promising possible approach to address this
type of quantum counterfactuality.
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1. Introduction

Quantum counterfactuality is an interdisciplinary field that brings together
quantum physics, mathematics, the philosophy of physics, and logic. More recently,
quantum computing has also entered the picture, given the potential computational
applications of counterfactuality.! The theoretical core of this interdisciplinary field
originates from a thought experiment proposed by Avshalom Elitzur and Lev
Vaidman in 1993: the so-called “quantum bomb detector problem”. The thought
experiment raises the possibility of performing detection measurements without
interaction with the object to be detected (“Interaction Free Measurements”, or
IFMs). Their interest is not only relevant within the quantum computational
community, IFMs also provide the ideal context to revisit the most intense debates
surrounding the interpretation of quantum mechanics, and specifically the opposing
Everett's many-worlds and orthodox or Copenhagen interpretation. This is because

! Elitzur A. & Vaidman L. (1993) have already raised the possibility of counterfactual quantum
computing. In the following investigations stand out: Mitchison & Jozsa (2001), Meéthot & Wicker
(2001), Azuma (2004), Hosten et al. (2006), Vaidman (2007), and Raj et al. (2019).
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those who have proposed and developed the theoretical core, especially Vaidman
(2018), have used the counterfactuals found in the IFM frameworks, as
epistemological and experimental justification for the many-worldsinterpretation.

A rigorous evaluation of the issues requires a logical and philosophical
clarification of the formalization of the process of counterfactual detection which all
these issues revolve around (Cuesta and Sanchez-Ovcharov 2023, 333). Our aim in
this paper is precisely to carry out such an exercise in logical and philosophical
clarification by entering some of the main results in so-called quantum logics and
classical semantics.

The first part of this paper is devoted to an exposition of the operation of the
two devices that allow us to speak of “counterfactual detections” and “measurements
without interaction” the Mach-Zehnder interferometer and the Elitzur-Vaidman
bomb detector. As we shall show, the latter is based upon the former. The second
part of the paper introduces the traditional formalization, in terms of classical logic,
which has been given to the counterfactual detection process. Through a simple
formal expression of two propositions articulated by a material conditional, we show
its insufficiency. In the third and last part of the paper, we explore other approaches
using classical connectives and their limits to build a formal articulation of all the
processes involved in counterfactual detections. We expose the best classical
alternatives and analyze their epistemological limits. Following on these results, we
raise several questions on the suitability of this classical approach present in the
current academic literature and point out some possible ways to connect quantum
counterfactuals and study them from a logical perspective. We finally mention, in a
nutshell, standard quantum logics based on Hilbert space lattices as the most
promising epistemological approach to quantum counterfactuality.

2. The Mach-Zehnder interferometer: Definition and function

Mach-Zehnder interferometry devices (Grynberg et al. 2010) were originally
developed to analyze phase shifts between suitably collimated light beams coming
from the same light signal emitted at the source. This setup consists of a light signal
source, two mirrors (M1 and M2), two detectors (D1 and D2) and two beam splitters
(BS1 and BS2). In a quantum context this means %2 probability for the photon to be
reflected and %2 to be transmitted. The complete device is shown in the figure below:
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Figure 1. Schematic diagram of Mach-Zehnder interferometer: light signal (Source), two mirrors
(M1 and M2), two detectors (D1 and D2) and two beam splitters (BS1 and BS2).

When the phenomenon of reflection of the light beam takes place, either on
the half-silvered surface of a beam splitter (BS1, BS2) or directly onto one of the
mirrors (E1, E2), a phase shift is introduced with respect to the initial beam’s phase.?
If we consider an incident monochromatic wave, a reflection at a beam splitter
introduces a phase shift of /2 in the reflected component. This phase shift must not
be understood as a spatial displacement of A/4, but rather as a relative phase
difference between the transmitted and reflected amplitudes. It is precisely this
phase relation —and not a physical path difference— that determines the
constructive and destructive interference patterns observed at the output ports of
the interferometer.

Suppose that the light source is a precision device that can send photons each
at a time.3 Hence a single photon is traveling along one of the device’s paths at any
time. Yet, the resulting phenomenon is not as simple as it would be from a classical-
corpuscular view of the experiment. As in the famous double-slit experiment, the
photon seems heuristically to somehow interfere with itself, as follows.

We represent as |-) in the Dirac’s notation the state of the photon traveling
to the right or right state and as |T) the state of the photon traveling upward or
upward state (inside the structure represented in Figure 1). This also allows us to
introduce the standard quantum-logical algebraic approach. The origin of standard
quantum logics due to Birkhoff and von Neumann (1936) has undergone many

2 The value of the phase difference is not a big deal for the explanation at hand, besides, the phase
difference in mirrors M1 and M2, being equal, will not affect the phase difference, and could be
included in a global phase difference.

3 Many of the discussions regarding whether these experiments are possible under optimal
conditions depend upon the possibility of emitting photons one at a time.
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developments we cannot explore here. However, most of them have emerged from
approaches based on different non-classical semantics* aimed at precisely capturing
certain results or striking aspects of quantum mechanics. In the end, we will say
something about it. Strictly speaking, standard quantum logics are in a nutshell
nothing more than the logical interpretation of the algebra that can be generated
from the class of linearly closed subspaces over Hilbert space (/). This structure is a
non-distributive (i.e. non-Boolean) orthomodular lattice isomorphic to the set P(H)
of all the projector operators defined over the Hilbert space. And the quantum-states’
mathematical representations (each closed subspace) are taken as quantum
propositions (Svozil 1998). Moreover, the representation of quantum systems
through these subspaces is precisely what we express using the bra-ket notation to
directly denote the inner product operation on / following the standard approach.
The photon’s successive reflections can then be represented as follows:>

|_)> :>(Reflection) ein/le) = lIT) :>(Reflection)_ |_>) (1)

This expression should be read as a state evolution, whereby the initial right
state of the photon |—), undergoes a reflection, indicated by a phase shift e™/2|1),
and thus becomes the upward state i|T), but after a second reflection returns to a
right state [—=).

[T =(Reflection) em/zl_)) =i|->) = (Reflection) — IT) 2)

This expression should be read as another physical evolution that takes the
initial upward state of the photon|T) which, after reflection and phase shift, ends up
in the upward state i|T).

However, in the physical transmission event there is no obstacle in the
photon’s path, and consequently no real phase shift. The photon rather seems to
interfere somehow with itself, so that the interference detected at D1 is a
constructive one, while that detected at D2 is destructive. This is a dramatic
consequence of forcing classical terms as trajectory in quantum devices. To arrive at
these conclusions, let us record the photon states in each section of the
interferometer as a superposition of states. Here each state can be identified with a
quantum proposition:

4For a general companion of different philosophical and technical discussions including different
non-classical semantical approaches we remit to Dalla Chiara and Giuntini (2002); Weingartner
(2004) and Engesser, et al. (2007).

> Notice that all the reflections that take place in the Mach-Zehnder interferometer produce a
phase shift of /2. Note also that the minus sign of the state argument in the second reflection of
a photon coming from the light source represents a global phase that will be indifferent to us since
it has no physical meaning. Quantum observables rely on the squared modulus of the amplitudes.
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Photon leaving the light source: [-) (3)
Photon after impact on BS1: \/% @am+1-» 4)
Photon after reflection in M1 and M2: \/ii( —[-=)+ i) (5)
Photon after impact in BS2: —|-) (6)
|-) state after BS2: \%ﬂ—)) + 7)) )
|T) state after BS2: % (=) +ilm™) (8)

These characteristics of the Mach-Zehnder interferometry device are the basis
of the Elitzur-Vaidman quantum bomb detector, which is why Vaidman (2008)
writes that “the simplest EV device is the Mach-Zehnder interferometer”. Let us
now look at the characteristics of the Elitzur-Vaidman device: the so-called quantum
bomb detector. This will introduce the quantum counterfactuals.

3. The Elitzur-Vaidman bomb detector: interaction free measurements (IFMs) and
counterfactuals

The so-called Elitzur-Vaidman quantum bomb tester (Elitzur & Vaidman, 1993)
only adds one structural element to the Mach-Zehnder interferometer, an opaque
object, e.g., a bomb, which goes off when a photon, incident at BS1 and traveling
down the M1 path of the interferometer, strikes it. This minimal modification at the
assembly level causes the interference pattern to be lost, again in analogy to the
famous double-slit experiment.
Diagrammatically, the EV device can be represented as follows:
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Figure 2. Schematic representation of the Elitzur-Vaidman bomb tester: light signal source, mirrors
M1 and M2, detectors D1 and D2, beam splitters BS1 and BS2, and an opaque object, the bomb.
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The recording of the successive photon states are the same as in the Mach-
Zehnder interferometer, except for a new state for the photon, called |[boom). This
represents the state when it hits the bomb located between BS1 and M1 and the
bomb explodes. We reformulate the paths and propositions for the EV detector as
follows:

Before BS1: [-) 9)
1 .

After BS1: N3 =)+ i-) (10)

After M1 and M2: % (Iboom) — |-)) (11)
1 1 i

After BS2: N |boom) — 3 [-) — 3 |T) (12)

If we pay attention to the photon’s states after passing through BS2, in terms
of (12), we can determine the three probabilities corresponding to the three possible
outcomes as follows:

2
Probability of achieving |boom): |%| = % (13)
2
Probability of achieving |—): |— %| = i (14)
P12
Probability of achieving |1): = (15)

From Born’s rule we obtain the standard Elitzur-Vaidman probabilities for an
ideal 50/50 interferometer: Y2 for explosion, % for detection at D1, and % for
detection at D2. Crucially, the % probability at D1 is not an interferential effect: the
presence of the bomb destroys the phase coherence between the arms, so the
amplitudes reaching BS2 do not interfere. The port D2 therefore becomes the only
genuinely interferential signature of the device, and its non-zero probability is what
allows interaction-free detection.

Note, therefore, that the last probability for a final upward state of the photon
has changed, relative to the simpler MZ set up, where the bomb is absent. Thus, we
can conclude that the presence of the opaque object (bomb) entails a % probability
of detecting its presence, without any apparent interaction with it —since there has
been no explosion at all.6

6 A distinction is usually made between the detection of the existence of an opaque object sensitive
to contact with a photon and a bomb whose action device is triggered by a photon detector. Here
we choose to treat the opaque object as functionally indistinguishable from a photon contact-
sensitive bomb. Eliztur and Vaidman claim that “in one respect the experiment which tests a bomb
without exploding it is easier than the experiment of testing the existence of an object in a given
place without touching it” since “it is possible to obtain certain information about a region in space
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Note that we may also remove detector D1, thus leaving the experiment with
only two structural elements —bomb and D2—, but with no consequence for our
chosen formal representation of the device. The reason is that the photon traveling
along the path to D1 is recoverable for the photon source since it is sufficient to close
the circuit between D1 and the photon source, as follows:
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Figure 3. Schematic diagram of Elitzur-Vaidman bomb tester with one detector (D2).

The case in which the photon does not appear to interact with the bomb,”
there is no explosion, and the photon is subsequently detected at D2, is known as
Interaction free measurement (IFM).2 It is so named because it allows us to
determine the presence of the bomb in the device, without exploding it —i.e. a
counterfactual detection.

4. Traditional formalization of the counterfactual detection process

The objective of the Elitzur-Vaidman device is to determine the presence of a bomb
in a counterfactual manner —that is, by detecting its existence without triggering

without any interaction in that region neither in the past nor at present”.

7 The conditions and terms under which this interaction occurs give rise to discussions on
interpretations of quantum mechanics, which are beyond the scope of the present work. We use
the terms “appear” and “apparent” to remain neutral with respect to such discussions for the time
being. Omitting it may give rise to a tacit acceptance of Everett’s Many-worlds interpretation, to
which Vaidman himself subscribes. There is no local interaction of any kind in the actual world.
The interaction takes place in that possible world in which the bomb would, in fact, explode.
8See Elitzur and Vaidman (1993), Vaidman (1994, 2003, 2008, 2018, 2019), Penrose (1994), Kwiat
et al. (1995) and Mitchison & Jozsa (2001).
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an explosion. The answer is obtained by detecting the presence of the bomb without
exploding it. And the threads that are involved in this detection are collected in the

following flowchart.
Is there a bomb? '—
Explosion e > No-explosion

State: |boom) D2 Detection  [¢--- » D1 Detection

Thereisa i
- bomb D -

Figure 4: Counterfactual detection procedures represented in a flow diagram. A dotted line
shows the ‘counterfactual’ detection procedure, while the solid lines show ‘actual’ ones.

As we shall see, Figure 4 represents not only the three possible results (bomb’s
explosion, D2’s detection and D1’s detection), but also their /ogica/relationship with
respect to the overall functioning of the detection procedure.

5. Logical approaches to the counterfactual detection procedures

In philosophy of logic, “counterfactual” usually refers, in the first instance, to the
conditional proposed by Stalnaker (1968), whose semantic proposal was later
developed by Lewis (1973). Suffice it to note, for the time being, that the notion of
“counterfactual” proposed by these two authors is framed within a modal approach
that is usually related with mainstream modal semantics. Their purpose does not
differ, at least in spirit, from the motivation behind using strict conditionals to model
every-day conditional inferences, relevant implications, Cooper’s paradoxes, and
similar phenomena. Obviously, none of these counterfactuals were developed in
response to the need to formalize IFMs.

They have nothing to do with the characterization of counterfactuals —not
as mere speculative or conditional informal inferences, but as physical phenomena.
It is true that some indirect connections have been drawn. While Lewis himself
explicitly linked his semantics for counterfactuals to a multiplicity of real possible
worlds®, and recent works have related this formalism to many-worlds

 Lewis (1993) proposed a realism which, on the other hand, is very hard to uphold after
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interpretations, we do not consider this kind of modal realism either necessary or
appropriate for an initial philosophical approach to IFMs.

Secondly, Vaidman and Elitzur, among others, have also framed their results
within the broader set of possible arguments supporting realist quantum
interpretations. However, our primary interest here is to characterize IFMs as
neutrally as possible. Once we adopt the standard quantum-logical approach and
Hilbert space notation, this task becomes particularly demanding.

It is, moreover, quite common in the philosophical literature to understand
counterfactuals in the strongest “classical” sense of the term —that is, as the
subjunctive form of material implication, as follows. Consider the interpretation of
natural language that requires a subjunctive mode: “If it were the case that ‘p’, then
it would be the case that ‘q’,” where it is implicitly asserted that, in fact, neither ‘p’
nor ‘q’ holds. Formally, this is typically represented as: (p. = q) A (=p A =q). This
conception of counterfactuals as subjunctive or hypothetical traces back to
Aristotelian and Megaric-Stoic dialectics (Cuesta 2021), becomes widespread in
scholastic discussions, and gains prominence among modern philosophers —
especially after Wolff and Kant.

And this the one that has been applied to IFMs. This is the conception that
has been taken to hold between the interaction of the photon with the bomb and its
explosion, even when there is, in fact, neither impact nor explosion.

Cuesta and Sanchez-Ovcharov (2023) point out that this approximation
suffers from a deficiency intrinsic to the formalism itself: a statement of the type
(»p = @) A(—p A —q) simply expresses a formal logical relation, in which it is
shown that a conditional (any) will be true even if antecedent and consequent are
false. To overcome this limitation, they introduce a distinction between informative
and non-informative counterfactual results, which demand caution when qualifying
a result as properly counterfactual. The isolated hypothetical conditional will in no
case be sufficient to distinguish between informative and non-informative
counterfactual statements. And both Mitchison and Jozsa (2001), as well as Cuesta
and Sanchez-Ovcharov (2023) when referring to informative counterfactual results,
understand that counterfactual detection is nothing else than “a detection which
results from a procedure represented by a true counterfactual conditional”.

incorporating the interpreted Elitzur-Vaidman results.
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6. Analysis of the conventional formalization: the subjunctive or hypothetical
conditional

As we have already mentioned, the most widespread formalization of the
counterfactual detection process has been carried out in classical logic by means of
the classical conditional: p — q. Here, propositions pand gsimply stand for “photon
interacts with the bomb” and “the bomb explodes”, respectively. In the
counterfactual detection process it is commonly taken that the truth values for both,
p and g, are 0 or false. This means that p as well as q are false propositions while the
conditional remains true (Kwiat et al. 1995; Vaidman 2003; Cuesta and Sinchez-
Ovcharov 2023) as in the classical truth-table in table 1.

p q9 p—q
11 1 1 1
2 1 0 0
3 0 1 1
4 0 0 1

Table 1: Corresponding to the conditional. The interpretation of the conditional called
counterfactual, hypothetical or subjunctive is highlighted.

Vaidman (2003, 495) introduces this conditional by pointing out that “simple
logic tells us: given that any interaction leads to an explosion and given that there
has been no explosion, it follows that there has been no interaction”. This reasoning
can be formalized with a modus tollens in “simple [classical] logic” as follows —
where pis “the photon interacts with the bomb” and ¢ “the bomb explodes”:

p—~q,2q F p (16)

Thus, the conditional is included as a premise, i.e., taking it as true —
specifically in that case in which it is true, but the antecedent and consequent are
both false (i4). The logical validity of this argument implicitly requires an
equivalence principle,'” namely the rule of the contraposition of the conditional,
formally defined as follows:

p—oq = nq-o-p (17)

Where we have used the metalogical symbol, =, to represent the relation of
logical equivalence. According to this logical rule, the truth of a conditional implies
the truth of its contrapositive and vice versa.

10 This equivalence principle can be alternatively regarded as a logical law or a rule of inference;
the difference is not relevant for our purposes.
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Bearing this in mind, we are already able to see that 74 is insufficient to
represent counterfactual detection processes. The problem is not that the conditional
collapses to i4, but that i4 alone does not track any of the physical distinctions
relevant to the experiment. The classical conditional simply assigns the value 1
whenever both antecedent and consequent are false, but this semantic fact does not
correspond to any physical process occurring inside the interferometer. Therefore,
the material conditional cannot distinguish between genuine interaction-free
detection and mere logical vacuity.

The two conditionals in (17) are only equivalent by virtue of formalizing the
same proposition and, ultimately, the same conditional events. If we assume that the
expression “p — q”stands for the event that “if the photon impacts, then the bomb
explodes”, then “—q — —p”, by definition, will necessarily only formalize the same
fact. But, even if we disregarded the equivalence between the conditional and its
contrapositive —which Vaidman fails to do—, 74 is still not sufficient to formalize
counterfactual detection processes.

First, to avoid confusion, we reject the term “counterfactual conditional” for
the interpretation of the conditional in which both, the antecedent and the
consequent, are false. We instead call it, on the grounds of what has just been
explained, simply “74’ or just “classical logical counterfactual”. We conjecture that
the use of the name “counterfactual” for this interpretation of the conditional may
have led to the mistaken identification of two different types of “counterfactuality”.
One of them refers to the formal interpretation of the logical definition of the
conditional: the classical one. The other refers to the empirical detection of an object
—the bomb— without any interaction with it: the quantum one. It seems that this
misidentification may have led to the failure of the formalization of the process of
counterfactual detection by means of a single conditional.

Secondly, 74 does not allow us to study the mathematical and physical events
that make the conditional true. On the one hand, calling this interpretation
“counterfactual” would have no more implications than calling it “74” or “Alice”. It
would be a mere question of nomenclature. On the other hand, justifying it on the
grounds that the counterfactual relies on the assumption that neither the antecedent
nor the consequent are in fact given —they are false— but the conditional is
nonetheless true, seems to be an illegitimate extra-logical leap, based on an
extrapolation from a logical form to an empirical result.

Let us use an example to illustrate the impossibility of formalizing IFMs by
means of 74 only. We simplify the original thought experiment as follows: we have
a black box in which there might be a bomb, and we want to determine if there is
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one. We can only do so by opening the box and looking inside.!! We can express the
situation in conditional terms as follows: “if I open the box, then I will detect if there
is a bomb inside”. Whereby we understand “I will detect” in both senses: either “I
will detect that there is a bomb” or “I will detect that there is no bomb”. Formally,
“p — q with pas “I open the box”, and ¢ as “I will notice that there is a bomb”.

Now take /4. We have a conditional that is true when, in fact, we have not
opened the box v(p) = 0, and in fact, we have not detected a bomb, v(q) = 0. To
claim that, due to the conditional being true under 74, we have truthfully determined
or ascertained something counterfactually concerning the bomb or the box is simply
to commit a category mistake. We have determined nothing either factually, nor
counterfactually. Only the formal truth of the conditional p — q has been
maintained. This is what we earlier referred to as an extra-logical leap: an
extrapolation from the truth of a logical form to the truth of an empirical event.
Delving a little further into it, the conditional itself, in any of its interpretations,
neither affirms nor confirms any fact about the material content of its terms. It only
establishes the formal truth about a formal expression of a hypothetical nature. In
this sense, in the case of 7/, when we have opened the box and have detected the
presence of the bomb —because it has exploded— or we have just detected that the
box is empty, in this case also the conditional has a truth value 1 —as in 74 But, in
addition we have factually determined that there is/is not a bomb in the box, and we
have transformed the hypothetical matter into a factual issue. Now it seems clear
that the presumed counterfactuality, derived from the extra-logical leap, has nothing
to do with that obtained in IFMs because in IFMs a counterfactual detection is, in
fact, obtained.

‘What the conditional “p = q” seems to offer is rather, at best, a functional
definition of the Elitzur-Vaidman bomb itself, so that each of its interpretations
corresponds to a formal description of the different material possibilities of the
experiment (Table 2):

p q p—q Material possibilities of the experiment
il 1 1 1 Photon impacts | Bomb explodes
2 1 0 0 Photon impacts | Bomb does not explode
3 0 1 1 Photon does not impact | Bomb explodes
i 0 0 1 Photon does not impact | Bomb does not
explode

Table 2. Material possibilities of the Elitzur-Vaidman bomb detector.

11 For the analogy to be complete, we can add that, if we open the box, and there is a bomb, it will
explode, but this is an unnecessary complication in this setting.
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We may consider whether this conditional is a correct formalization of the
bomb’s design: a device such that if a photon, p, hits it, then the bomb explodes, g.
But it is necessary to realize that even this definition is incomplete.

The logical form of the conditional includes an interpretation, i3, p — q :
v(p) =0y v(q) =1, which we will reject since it is not applicable to our
experiment as described with all its parameters under control. This interpretation
would ultimately model at the very most a faulty bomb or failure due to e.g. external
causes to the experiment, making it no longer ideal —or not an interpretation at all.
By removing i3 we rule out events such as: the deterioration of the pump, that it
interacts with a photon not coming from our light source (even one outside our
laboratory), that the laboratory technician trips over and makes it explode, or that it
is simply stored incorrectly so that due to wear and tear of the insulating material
over the years, the pump ends up exploding. These are all trivial cases but cannot
apply to our set up.

In the logically significant ideal experiment —under controlled parameters,
i.e., a laboratory with a perfect experimental setup, without failures— the i3
interpretation is inapplicable. That is why we propose —on the principle of
charity— to distinguish two definitions of photon-sensitive bomb: one outside the
laboratory described in the thought experiment (where 73 may be possible) and one
inside the laboratory as described (where i3 is simply inapplicable). Inside our
laboratory, the bomb is, by definition, a device which in fact explodes only when
the photon —coming from our light source— impacts on it. Under no other
circumstances does it explode.

This answers better to a biconditional: the bomb explodes if, and only if, our
photon impacts on it (p <> q) where i3is removed as a possibility, and all possible
interpretations are listed in the following table (Table 3):

p q p <> q | POSSIBILITY
i 1 ] 1 Possible
(The events p and q occur)
2 1 0 0 Impossible
3 0 1 0 Inapplicable
. Possible
“ 0 0 ! (The events p and q do not occur)

Table 3. Definition of the bomb inside the laboratory through a biconditional.

However, we have not formally defined the counterfactual detection that
takes place in IFMs yet. We must recall that the counterfactual we are looking for is
that the bomb does not explode and that our photon is detected in D2. Thus, we
must rule out also the option 7. To do so, we must include the key fact of the photon
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detection in D2. This leads us to the restatement of the counterfactual detection in
this experiment.

We name counterfactual detection the combination of two complex events
reflected in the following molecular propositions:

A. No photon impact on bomb, no bomb explosion;!?
B. Photon reflection at BS2, photon detection in D2.

Only the combination of both molecular sentences expresses that a
counterfactual detection of the bomb has taken place in the quantum sense. In that
combination, the formula p <= q can maybe characterize the operation of the bomb
as some kind of definition. It is now necessary to formally include proposition B:
“the photon reflected in BS2 impacts on D2”. This is the data that will allow us to
claim that there is an actual bomb inside the device —on which the photon has not
impacted, and which has not exploded, i.e., 74 In other words, proposition B
excludes possibility 71.

7. Classical Logic’s Constraints

7.1. Counterfactual detection as a relation between two biconditionals

In accordance with the foregoing, we offer a more complete definition of
counterfactual detection, as that quantum-mechanical procedure that serves to
determine —given detection in D2, after reflection in BS2— the effective detection
of an object that would explode when interacting with a photon, while the object
does not actually explode. Consequently, the formalization of counterfactual
detection must include some connection of proposition A —represented by the
biconditional p < g, in i4— with the formalization of proposition B.

Taking ras “the photon is reflected in BS2” and sas “the photon is detected in
D2” we can formalize the sentence “the photon is detected in D2 if it is reflected in
BS2” as another biconditional, expressing B as r <> s.

The reasons why we take the biconditional r <> s instead of the simple
conditional r — s are the same as before with p <> g, namely: we stick to an
experiment performed in a laboratory with all parameters ideally controlled so that
the detector D2 cannot signal the detection of a photon if this photon has not
previously been reflected in BS2. And it can only be reflected in BS2 if it comes from
our light source, under some ideal conditions inside the laboratory.

12 Tt must be noted that this proposition contains two negations by virtue of the fact we are
considering the biconditional in the interpretation 74
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As counterfactuality requires a connection between two biconditionals, we
need some connection between them expressed as:

(p < q) conn (r < s) (18)

which is the extended expression of the semantic relation between propositions A
(p <> qin i4) and B (r <> s in il),i.e. “A conn B”.

We proceed to reformulate the IFMs flowchart in Figure 5 including the
modifications discussed so far:

“conn®

p<>q r<>s

i

e — L p) r(1) — r(0)

al) J—L al0) | | al) ~—= q(0) s() _L s s «I-L s(0)
il" i2 i3 i1 2 i3 i4ﬂ

i4
v

i

There is a bomb. No detection yet. There is a bomb. If detection in D1,
Factual detection (Hypothetical Counterfactual there is no bomb.
conditional) detection

Tmpossible for - Inapplicable for Impossible Impossible

laboratory bomb laboratory bomb

Figure 5. This figure represents diagrammatically the truth table of the biconditionals:
A: (p <> q) and B: (r <> s), and their relation in the counterfactual detection process.

Next, we will elucidate what the connection between A and B may consist of.

7.2. Analyzing classical connectives as “conn” and their limits

In the following, we inquire into whether the counterfactual detection expressed in
the terms of formula (18) can be included in a propositional language by introducing
a connective to represent the relation we are looking for. We can rule out, in
advance, a monadic connective (negation) which could satisfactorily formalize such
arelation, since it connects two molecular propositions. In the classical propositional
logic, we can define all possible connectives as possible syntactical relevant (non-
repeated and well-formed) combination of truth values of each 22 (bivalent dyadic)
combinations. We will have then that the total number of so-called connectives is
16. And we can represent all in a single truth table as in Table 4.
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1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16

A BT v ielAa|l=oBlola|t ]y [al»[B]«] 1 ]L

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 4: Configuration of all possible non-trivial connectives that can be defined in a bivalent
classic calculus.

And from all the logical possibilities reflected in this table we want to focus
only in those cases valid for those interpretations in which v(4) = 1 and v(B) =1
and, furthermore, (A conn B) = 1. Let us look at the columns and see why the
different connectives cannot replace “conn” without loss of relevant information:

(1) The first and last (1 and 16) columns must be ruled out since logical validities
(T) and invalid formulas (1) cannot replace the relation we want. In classical
logic, as pointed out by Wittgenstein in his Tractatus Logico-Philosophicus
(4.461), tautologies and contradictions don’t add any relevant information.

(2) The second and tenth columns are the so-called inclusive (V) and exclusive (Y)
disjunctions, respectively.

(3) The exclusive disjunction asserts that the two formulas to be related do not bear
any kind of semantical relation in their models and, therefore, could even be
assumed to be equivalent to an absence of connection: ‘eesa’. This is because
they cannot be true simultaneously under this logical operation. Inclusive
disjunction, on the other hand, raises the problem of allowing only one of the
two biconditionals to be true while the other is false, even though this need not
necessarily be the case. Similarly, columns eleven and thirteen must be
eliminated. This is because they exclude one of the two terms, equivalent to the
negations of the formulas to be related, in all their interpretations. Thus, the
connectives defined by columns four and six (numbers 4 and 6) that exclude
the other formula, stating only the interpretation of one —that is, being
logically equivalent to it— should be deleted for the same reason.

(4) The Sheffer (1) and the Peirce (|) strokes are removed for the same reasons
relating to their monadic character, as well as for being false in the case in
which both biconditionals are true —an obviously indispensable requirement.
With the latter requirement, we may also discard column twelve (12) or
abjunction (+) and column fourteen (14) or converse abjunction (¢).

(5) The conditional (—), in the fifth column (5), raises the same problems reviewed
in the previous section, as well as new problems. If we take “conn” as a
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conditional, the resulting formula will be true even if, for example, both
biconditionals are false —which is not an interpretation consistent with
IFMs—, as well as when biconditional A corresponding to the definition of the
bomb is false while B is true. Remember this was the original proposal.

(6) The converse conditional («), third column (3), cannot be the connection
because it allows (i) that A holds and B does not, and (ii) that A and B are both
false, making it impossible in each case to formalize the facts involved in
counterfactual detection through D2. And the biconditional («), seventh
column (7), cannot be the connection “conn’ because it allows A and B to be
false, making it impossible, again, to formalize of the events involved in the
counterfactual detection through D2.

(7) Finally, the one remaining option is the conjunction (A) in column eight (8). In
this case we will have that biconditionals A and B will only be connected when
both are true —and in no other circumstances.

Let us examine the latter possibility a little more closely. We have established
that, in counterfactual detection, at least four events are related:

p: “Photon impact on bomb”. This event should not occur.
q: “Bomb explosion”. This event should not occur.
r: “Photon reflection at BS2”. This event should occur.

s: “Photon detection at D2”. This event should occur.

We have defended that these events (p with gand rwith s), as circumscribed
to ideal laboratory conditions, have a relationship of sufficiency and necessity:

A: It is sufficient and necessary that p (impact of the photon on the bomb) for ¢
(explosion of the bomb), and vice versa.

B: It is sufficient and necessary that r (reflection of the photon by BS2) for s
(detection of the photon in D2) and vice versa.

But these relations of sufficiency and necessity can’t be properly formalized
through any classical connective, even the conditional as relevance paradoxes show
(note that classical conditional captures a more relaxed relation). The only possible
way will be to use a biconditional to ensure from right to left and vice versa that it
is logically impossible to obtain p without g nor rwithout s. So we write:

Ar(peoq)
B:(res)

Then, we must recall that, for counterfactual detection to occur, the events
involved in A must not have occurred, while those involved in B must have
occurred. This, as we have already seen, can be registered through the line of
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interpretation of the truth table of the biconditional, which reflects this
occurrence/non-occurrence of the events:

A: (p < q), should be adopted by 4 v(p)=0, v(q)=0.
B: (r <= s), should be adopted by iI: v(z)=1, v(s)=1.

Nevertheless, it remains to represent formally that, in the counterfactual
detection, the two molecular events must occur: A must arise in 74 and B must arise
in 77, and none of the options reviewed in the previous sections, relative to other
logical connectives different from the conjunction, can arise. Any other relation that
arose between A and B, in any other interpretation, would correspond to an
experimental situation other than counterfactual detection. Consequently, we can
take the step of formalizing (p <> q) conn (r < s) as follows:

Ppepalreos) (19)

However, we have not yet formally expressed all that is involved in
counterfactual detection: the formula (19) does not allow us to discern whether the
events involved in p < q and those involved in (r <> s) occur or do not occur. In
other words, in (19) we do not know which of these two alternatives obtains:

(peoq)alres): vp)=0v(q)=0v)=1v(s)=1 (20 a)
peoq)alre—s) vp)=1v(g=1Lv{)=0v()=0 (20b)

We should note that we have discarded the other combinations of truth
values, since the experiment takes place under ideal laboratory conditions (see Table
3). And also that, in fact we are modeling here states of knowledge of quantum
results.

But then we can notice that this is the same as simply asserting the truth
interpretations of every propositional letter directly as

P Aaga(=ra=s) (21)

Which is nothing but the repeated definition formalized completely ad Aoc
stipulated without any kind of generality capable to be implemented in a general
framework.

Moreover, we would still have to capture the simultaneously impossibility of
getting an explosion and a detection in D2. This means we need to add an exclusive
disjunction between g and suntil obtain:

((p A@QA(=ran s))A (q ¥ s) (22)

And with this we can indicate that (i) Either the event g (“bomb explosion”)
obtains, and then only the first of the disjuncts, ¢, is true or else (ii) event s
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(“detection in D2”) occurs. The latter situation corresponds to the events involved
in counterfactual detection, so we can try to reduce the counterfactual detection to
this case but then the logical approach collapses. The ideal of use biconditionals and
affirm something like [(p <= q) a (r <> 5)] A (s) keeping the exclusive disjunction
will face the interpretations in which the first biconditional is true because both p
and q are false and the second one having r and s both true. Indeed, if we try to
maintain the truth of s then we must interpret the second biconditional in this
precisely case and this has no physical meaning here.

Classical logical connectives, therefore, exhibit a clear intrinsic limitation
when attempting to model the notion of quantum counterfactuality. The main issue
is that previous treatments in the literature have assumed the material conditional
to be an adequate connective for approaching this concept. However, propositional
logic only captures various relations between possible logical values and operations
on propositions, allowing for different interpretations, such as logical possible
worlds, where we intend to precisely situate them. Quantum counterfactuality,
however, is qualitatively distinct from classical counterfactuality, in which one
might claim, at best, that a conditional is true even when both terms it connects are
false. And classical logic presents a clear limitation as an epistemological tool when
approaching its modeling.

Therefore, contrary to the usual proposals we have analyzed, it seems relevant
to conduct an analysis of quantum counterfactuality based on standard quantum
logics. As we mentioned at the outset, these logics are nothing more than the logical
interpretation of the algebra underlying the set of linearly closed subspaces of a
Hilbert space, which forms a non-distributive lattice. This suggests that the shift
towards quantum logics is, in all respects, a natural one. And it is precisely the partial
order relation of this lattice that serves as the foundation for defining a quantum
conditional. Moreover, the extensive literature in logic and philosophy of logic
regarding the proper semantic characterization of this conditional provides us with
valuable tools to address quantum counterfactuality within the Hilbert space
formalism.

Additionally, (i) the fact that we can define the four atomic propositional
elements necessary for the correct modeling of Interaction-Free Measurement (IFM)
in terms of systems and system interactions (under operators) with four systems
represented over subspaces on /7, as well as (ii) the possibility of modeling the
evolution of the entire system within the quantum lattice itself, seem to indicate
(alongside the complete failure of classical logic to model this notion of
counterfactuality) the necessity of shifting our study to quantum logics.
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This shift will not only clarify the logical relations between the elements we
need to consider but will also allow us to connect debates across different domains:
philosophical (concerning the status of quantum logics and their relation to certain
realist interpretations that, as we have seen, use quantum counterfactuality as an
argument), logical (providing an opportunity to apply quantum logics to a new
experiment and, in doing so, refining the notion of conditionality through
counterfactuality itself), and computational (bridging the approach based on
quantum logics and the Hilbert space formalism, linking algebraic logical results
with quantum logic gates and the characterization of the interferometer as a
quantum circuit). In the lattice of closed subspaces of a Hilbert space, propositions
behave not as truth-valued sentences but as operators whose meet and join reflect
the physical compatibility relations between observables. This non-distributive
structure allows the formalism to represent interference, phase relations and
counterfactual paths in a way that no classical connective can reproduce.

8. Concluding remarks

In this paper we have shown that the counterfactual conditional (as merely
subjunctive) is insufficient to represent the quantum counterfactual detections that
obtain in IFMs. We cannot formalize them using propositional logic through a
connective privileging one interpretation (74) over the rest. But this constraint,
moreover, is not overcome by the ad hoc incorporation of new connectives labeled
“quantum” based on a classical calculus. Either we relate two propositions through a
conditional, or we do not, but limiting their connection to a concrete interpretation
of the conditional implies an a posteriori approach. This does not yield an adequate
formalism yet. Moreover, to qualify the interpretation 74so as to be able to transform
it into another expression that represents the particular truth values of pand gas 0
returns logically equivalent (substitutable) expressions without any physical
interpretation.

The quantum counterfactual detection process involves at least four items (p,
g, 1, s) we have successfully identified. We have studied some alternative, more
complex formulas, that could formalize the relations of sufficiency and necessity
existing between the pairs of facts (p, q) and (r, s), through the biconditional. But
they also failed due to the excess of semantic ad Aoc restrictions imposed. At this
point we must, point out that the best classical alternatives still suffer from serious
limitations. They do not represent the probabilities of occurrence of the different
observables since it cannot quantify or weight the states |boom) and |D2). So, it does
not capture the quantum mechanical reasons why the counterfactual detection
occurs. Secondly, it may be thought to be an ad hoc formalization that: (i) does not
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generalize into a formal structure capable of accounting for the functioning of the
mechanism, (ii) does not provide a comprehensive approach through the quantum-
mechanical formalism involved, (iii) is not obviously computable. Our analysis
indicates that classical propositional logic is insufficient —though not wholly
useless— for modelling interaction-free measurements. It captures certain idealized
causal dependencies but fails to represent the genuinely quantum correlations and
probability structures on which the phenomenon relies. For a complete treatment,
a non-Boolean framework such as standard quantum logics appears necessary.

First, in the presentation of the experiment itself, and finally, after analyzing
all the limitations of classical logic, standardly defined quantum logics within the
Hilbert space formalism appear to be the most promising formal tool for addressing
quantum counterfactuality. Moreover, as we have just mentioned, one of the most
critical limitations of classical logical analysis is its inability to connect with the
quantum inferential processes, specifically those of quantum probability, that are
necessary in this context and crucial for modeling what occurs in the bomb detector.

Thus, IFMs provide a unique testbed where physical, logical and philosophical
considerations converge: the physics demands a non-Boolean structure; the logic
must capture non-classical relations of dependence; and the philosophical analysis
clarifies how counterfactual reasoning should be reconceived in quantum contexts.
This confluence highlights the need for a unified framework and suggests that
quantum logics provide precisely the level of generality required.

Quantum logics, being a natural lattice-theoretic interpretation of the algebra
isomorphic to the space defined by projection operators on Hilbert space, allow for
this connection in a completely natural and automatic manner. Additionally, we
have also seen that quantum logics facilitate an exploration of a novel relationship
between (i) philosophical debates related both to interpretations of quantum
mechanics (where IFMs are used as cases to construct arguments in favor of certain
many-worlds-type interpretations) and to the very concept of physical
counterfactuality, (ii) discussions in the philosophy of logic concerning the
formalism of quantum logic itself, and (iii) debates in computational contexts, given
that quantum logics provide a natural formalism for linking the bomb detector
experiment to its definition as a quantum circuit.

Nevertheless, the epistemological limitations of classical logical connectives
in this context could serve as a foundation for a future critique of all those quantum-
logical calculi which take propositional logic as a basis and classical connectives —
especially the conjunction and the conditional— with the same truth table to
generate descriptions of quantum mechanical states. What is needed is a more
general formalism, one that fits the quantum interpretation of the interferometer,
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not as a mere matter of nomenclature, akin to a simple formal exercise in modeling
sentences in natural language in propositional logic but going way beyond in fully
describing the physics of the MZ interferometer. However, even though we do not
yet possess it, having explored the limitations of the classical approach taken thus
far allows us to explicitly identify the necessary ingredients, recognize how quantum
logics emerge as the most promising framework, and highlight the next steps to be
taken.!
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