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ACCURACY AND THE IMPS 

James M. JOYCE, Brian WEATHERSON 

 

ABSTRACT: Recently several authors have argued that accuracy-first epistemology ends 

up licensing problematic epistemic bribes. They charge that it is better, given the 

accuracy-first approach, to deliberately form one false belief if this will lead to forming 

many other true beliefs. We argue that this is not a consequence of the accuracy-first 

view. If one forms one false belief and a number of other true beliefs, then one is 

committed to many other false propositions, e.g., the conjunction of that false belief with 

any of the true beliefs. Once we properly account for all the falsehoods that are adopted 

by the person who takes the bribe, it turns out that the bribe does not increase accuracy. 
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1.Accuracy, Bribes and Scoring Rules 

Belief aims at the truth.1 So at least in some sense, an agent is doing better at 

believing the closer they are to the truth. When applied to individual beliefs, this 

generates epistemic advice that is literally platitudinous: if you know that a change 

in your attitude towards p will make your attitude towards p more accurate, make 

that change! When applied to collective bodies of belief though, the advice turns 

out to be more contentious. Call epistemic consequentialism the view that if an 

agent knows that a change in their overall belief state will make their belief state 

more accurate, they should make that change, if they have the power to do so. 

Hilary Greaves has recently argued that epistemic consequentialism is false 

because it licences certain epistemic ‘bribes’, and these should not be licenced.2 

We’ll argue that the best forms of epistemic consequentialism do not licence some 

of these bribes after all.3 Here is the key case Greaves uses.4 

                                                        
1 Thanks to Alejandro Pérez Carballo, Richard Pettigrew, and the participants in the Arché 

Epistemology Seminar for helpful comments. 
2 Hilary Greaves, “Epistemic Decision Theory,” Mind 122 (2013): 915–952, 

https://doi:10.1093/mind/fzt090. 
3 Though they do licence others; see section 2.4 for more discussion. 
4 Greaves has four other cases, but the Imps case is the only one that is a problem for all forms of 

consequentialism she discusses. Similar cases have suggested by Selim Berker and C. S. Jenkins, 

but we’ll focus on Greaves’s discussion since she engages more fully with the literature on 

scoring rules. We’ll return briefly to Berker’s discussion in section 2. Berker’s version is in his 

“Epistemic Teleology and the Separateness of Propositions,” Philosophical Review 122 (2013): 
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Emily is taking a walk through the Garden of Epistemic Imps. A child plays on 

the grass in front of her. In a nearby summerhouse are 𝑛 further children, each of 

whom may or may not come out to play in a minute. They are able to read 

Emily’s mind, and their algorithm for deciding whether to play outdoors is as 

follows. If she forms degree of belief 0 that there is now a child before her, they 

will come out to play. If she forms degree of belief 1 that there is a child before 

her, they will roll a fair die, and come out to play iff the outcome is an even 

number. More generally, the summerhouse children will play with chance (1 −
𝑞(𝐶0)

2
), where 𝑞(𝐶0) is the degree of belief Emily adopts in the proposition 𝐶0 that 

there is now a child before her. Emily’s epistemic decision is the choice of 

credences in the proposition 𝐶0 that there is now a child before her, and, for each 

𝑗 = 1, … , 𝑛 the proposition 𝐶𝑗 that the jth summerhouse child will be outdoors in 

a few minutes’ time. 

…if Emily can just persuade herself to ignore her evidence for 𝐶0, and adopt (at 

the other extreme) credence 0 in 𝐶0, then, by adopting degree of belief 1 in each 

𝐶𝑗(𝑗 = 1, . . . ,10), she can guarantee a perfect match to the remaining truths. Is it 

epistemically rational to accept this ‘epistemic bribe’?5 

The epistemic consequentialist says that it is best to have credences that are 

as accurate as possible. We will focus on believers who assign probabilistically 

coherent credences (degrees of belief) to the propositions in some “target set” 𝒳, 

and we will think of the “degree of fit” between her beliefs and the truth as being 

measured by a strictly proper scoring rule. This is a function 𝐈𝒳 which associates 

each pair ⟨𝐜𝐫𝐞𝐝, @⟩ consisting of a credence function 𝐜𝐫𝐞𝐝 whose domain includes 

𝒳 and a consistent truth-value assignment @ for elements of 𝒳 with a non-

negative real number 𝐈𝒳(@, 𝐜𝐫𝐞𝐝). Intuitively, 𝐈𝒳 measures the inaccuracy of the 

credences that cred assigns to the propositions in 𝒳 when their truth-values are as 

described by @. Note that higher 𝐈𝒳-values indicate higher levels of epistemic 

disutility, so that lower is better from a consequentialist perspective. One popular 

scoring rule is the Brier score, which identifies inaccuracy with the average 

squared distance between credences and truth-values. (Greaves calls this the 

‘quadratic scoring rule’, which is a useful description too.) More formally, we have: 

𝐁𝐫𝐢𝐞𝐫𝒳(@, 𝐜𝐫𝐞𝐝) =
1

|𝒳|
∑ (

𝑋∈𝒳

𝐜𝐫𝐞𝐝(𝑋) − @(𝑋))2 

                                                                                                                       
337–393, http://doi.org/10.1215/00318108-2087645, and “The Rejection of Epistemic 

Consequentialism,” Philosophical Issues 23 (2013): 363–387. Jenkins’s version is in her 

“Entitlement and Rationality,” Synthese 157 (2007): 25–45, http://doi.org/10.1007/s11229-006-

0012-2.  
5 Greaves, “Epistemic Decision Theory,” 918. 
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where|𝒳| is the number of propositions in 𝒳 and @(𝑋) is either zero or one 

depending upon whether X is true or false. 

Another common score is the logarithmic rule, which defines inaccuracy as: 

𝐋𝐨𝐠𝒳(@, 𝐜𝐫𝐞𝐝) =
1

|𝒳|
∑ −

𝑋∈𝒳

log(𝐜𝐫𝐞𝐝(𝑋)) ⋅ @(𝑋) 

For now we will follow Greaves in assuming that our epistemic 

consequentialist uses the Brier score to measure epistemic disutility, but we will 

relax that assumption in a little while. 

Now let’s think about the ‘bribe’ that Greaves offers, from the point of view 

of the epistemic consequentialist. The choices are to have one of two credal states, 

which we’ll call cred1 and cred2. We’ll say cred1 is the one that best tracks the 

initial evidence, so 𝐜𝐫𝐞𝐝𝟏(𝐶0) = 1, and 𝐜𝐫𝐞𝐝𝟏(𝐶𝑖) = 0.5 for 𝑖 ∈ 1, . . . ,10. And 

cred2 is the credence Emily adopts if she accepts the bribe, so 𝐜𝐫𝐞𝐝𝟐(𝐶0) = 0, 

while 𝐜𝐫𝐞𝐝𝟐(𝐶𝑖) = 1 for 𝑖 ∈ 1, . . . ,10. Which state is better? 

Thinking like an epistemic consequentialist, you might ask which state is 

more accurate? It seems like that would be cred2. While cred1 gets 𝐶0 exactly right 

it does not do very well on the other propositions. In contrast, while cred2 gets 𝐶0 

exactly wrong, it is perfect on the other ten propositions. So overall, cred2 looks to 

have better epistemic consequences: when compared to being right about one 

proposition and off by 0.5 on ten others, being right on ten is surely worth one 

false belief. The Brier score seems to bear this out. If we let 𝒳, the target set, 

consist of 𝐶0, 𝐶1, . . . , 𝐶10, then we have 

𝐁𝐫𝐢𝐞𝐫𝒳(𝐜𝐫𝐞𝐝𝟏, @) =
1

11
[(1 − 𝐜𝐫𝐞𝐝𝟏(𝐶0))2 + ∑(

10

𝑖=1

@(𝐶𝑖) −
1

2
)2] =

10

44

𝐁𝐫𝐢𝐞𝐫𝒳(𝐜𝐫𝐞𝐝𝟐, @) =
1

11
[(1 − 𝐜𝐫𝐞𝐝𝟐(𝐶0))2 + ∑(

10

𝑖=1

@(𝐶𝑖) − 𝑐𝑟𝑒𝑑(𝐶𝑖))2] =
1

11

 

So, it seems that a good epistemic consequentialist will take the bribe. But, 

doesn’t that seem like the height of epistemic irresponsibility? It means choosing to 

believe that 𝐶0 is certainly false when you have conclusive evidence for thinking 

that it is true. If you see the child on the lawn in front of you, how can you 

sanction believing she is not there? 

As Greaves admits, intuitions are divided here. Some consequentialists might 

think that “epistemic bribes” are at least sometimes worth taking, while those of a 

more deontological bent will always find such trade-offs “beyond the pale.”6 We 

                                                        
6 Berker, “Epistemic Teleology,” 363. 
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will largely sidestep these contentious issues here, though our argument will offer 

comfort to epistemic consequentialists who feel queasy about accepting the bribe 

offered in Imps. We contend that, when inaccuracy is measured properly, the 

consequences of adopting the cred2 credences are strictly worse than the 

consequences of adopting cred1. 

The basic problem is that Imps cherry-picks propositions in a way no 

consequentialist should condone. Its persuasive force rests on the assumption that, 

for purposes of epistemic evaluation, nothing matters except the accuracies of the 

credences assigned to propositions in the target set 𝒳. But 𝒳 is the wrong target! 

By confining attention to it Greaves ignores the many other credences to which 

Emily becomes committed as a consequence of adopting cred1 or cred2. Any 

(coherent) agent who invests credence zero in 𝐶0 must also invest credence zero in 

any proposition 𝐶0 ∧ 𝑌, where 𝑌 is any conjunction or disjunction of elements from 

𝒳. Likewise, anyone who invests credence one in 𝐶𝑛 must invest credence one in 

any proposition 𝐶𝑛 ∨ 𝑌, where 𝑌 is any conjunction or disjunction from 𝒳. In the 

current context (where the probabilities of the various 𝐶𝑖 are independent), when 

Emily adopts a credence function over 𝒳 she commits to having a credence for (i) 

every atomic proposition ±𝐶0 ∧± 𝐶1 ∧±𝐶2 ∧ … ∧±𝐶10, where ‘±’ can be either an 

affirmation or a negation, and (ii) every disjunction of these atomic propositions. In 

short, she commits to having credences over the whole Boolean algebra 𝒜𝒳 

generated by 𝒳. Since each event of a child coming out is independent, adopting 

cred1 will commit her to setting cred1(±𝐶0 ∧± 𝐶1 ∧±𝐶2 ∧ … ∧±𝐶10) =
1

1024
 when 𝐶0 

is affirmed, and 0 when it is negated. While adopting cred2 commits her to setting 

cred2(±𝐶0 ∧± 𝐶1 ∧±𝐶2 ∧ … ∧±𝐶10) equal to 1 when 𝐶0 is negated and the rest of the 

𝐶𝑖 are affirmed, and equal to 0 otherwise. In this way, each of these probability 

assignments over the 2048 atoms determine a definite probability for every one of 

the 22048 propositions in 𝒜𝒳. 

It is our view that consequentialists should reject any assessment of 

epistemic utility that fails to take the accuracies of all these credences into account. 

All are consequences of adopting cred1 or cred2, and so all should be part of any 

consequentialist evaluation of the quality of those credal states. The right “target 

set” to use when computing epistemic disutility is not 𝒳but 𝒜𝒳. If we don’t do 

that, we ignore most of the ways in which cred1 and cred2 differ in accuracy. If 

Emily takes the bribe, she goes from having credence 0.5 in 𝐶0 ↔ 𝐶1 to having 

credence 0 in it. And that’s unfortunate, because the chance of 𝐶0 ↔ 𝐶1 goes from 

0.5 to 1. This is another proposition, as well as 𝐶0, that Emily acquires a false belief 

in by taking the bribe. Of course, there are other propositions not counted that go 

the other way. Originally, Emily has a credence of 0.25 in 𝐶1 ∧ 𝐶2, and its chance is 
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also 0.25. After taking the bribe, this has a chance of 1, and her credence in it is 1. 

That’s an improvement in accuracy. So there are a host of both improvements and 

deteriorations that are as yet unaccounted for. We should account for them, and 

making the target set be 𝒜𝒳 does that. 

When seen from this broader perspective, it turns out the seeming 

superiority of cred2 over cred1 evaporates. The rest of this section (and the 

appendix) is dedicated to demonstrating this. We’ll make the calculations a little 

easier on ourselves by relying on a theorem concerning Brier scores for coherent 

agents. Assume, as is the case here, that Emily’s credences are defined over an 

atomic Boolean alegbra of propositions. The atoms are the ‘worlds’, or states that 

are maximially specific with respect to the puzzle at hand. In this case there are 

2048 states, which we’ll label 𝑠0through 𝑠2047. In 𝑠𝑘, the first child is on the lawn 

iff 𝑘 ≤ 1023, and summerhouse child 𝑖 comes out iff the (𝑖 + 1)th digit in the 

binary expansion of 𝑘 is 1. Let 𝒮𝒳 be the set of all these states. That’s not a terrible 

target set; as long as Emily is probabilistically coherent it is comprehensive. The 

theorem in question says that for any credence function cred defined over a 

partition of states 𝒮, and over the algebra 𝒜 generated by those states, 

Theorem-1 

𝐁𝐫𝐢𝐞𝐫𝒜(𝐜𝐫𝐞𝐝, @) =
|𝒮|

4
𝐁𝐫𝐢𝐞𝐫𝒮(𝐜𝐫𝐞𝐝, @) 

(The proof of this is in the appendix.) So whichever credence function is more 

accurate with respect to 𝒮𝒳 will be more accurate with respect to 𝒜𝒳. So let’s just 

work out 𝐁𝐫𝐢𝐞𝐫𝒮𝒳
 for cred1 and cred2 at the actual world. 

First, cred1 will appropriately assign credence 0 to each 𝑠𝑘  (𝑘 ∈ 0, . . . ,1023). 

Then it assigns credence 
1

1024
 to every other 𝑠𝑘. For 1023 of these, that is off by 

1

1024
, contributing 

1

220 to the Brier score. And for 1 of them, namely @, it is off by 
1023

1024
, contributing 

10232

220 . So we get: 

𝐁𝐫𝐢𝐞𝐫𝒮𝒳
(𝐜𝐫𝐞𝐝𝟏, @) =

1

2048
[1024 ⋅ 0 + 1023 ⋅

1

220 +
10232

220 ]

=
1

2048
⋅

1023 + 10232

220

=
1

2048
⋅

1023 ⋅ 1024

220

=
1

2048
⋅

1023

1024

=
210 − 1

221
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It’s a bit easier to work out 𝐁𝐫𝐢𝐞𝐫𝒮𝒳
(𝐜𝐫𝐞𝐝𝟐, 𝑠2047). (We only need to work 

out the Brier score for that state, because by the setup of the problem, Emily knows 

that’s the state she’ll be in if she adopts cred2). There are 2048 elements in 𝒮𝒳. And 

cred2 assigns the perfectly accurate credence to 2046 of them, and is perfectly 

inaccurate on 2, namely 𝑠1023, which it assigns credence 1, and 𝑠2047 which it 

assigns credence 0. So we have 

𝐁𝐫𝐢𝐞𝐫𝒮𝒳
(𝐜𝐫𝐞𝐝𝟐, 𝑠2047) =

1

2048
(2046 ⋅ 0 + 1 + 1)

=
1

1024

=
211

221

 

In fact, it isn’t even close. If Emily adopts cred2 she becomes a little more 

than significantly more inaccurate. 

It is tedious to calculate 𝐁𝐫𝐢𝐞𝐫𝒜𝒳
(𝐜𝐫𝐞𝐝𝟏, @) directly, but it is enlightening 

to work through the calculation of 𝐁𝐫𝐢𝐞𝐫𝒜𝒳
(𝐜𝐫𝐞𝐝𝟐, 𝑠2047). Note that there are two 

crucial states out of the 2048: 𝑠2047, the actual state where all children come out, 

and state 𝑠1023 where child 0 does not come out, but the other 10 children all do. 

There are 2211−2 propositions in each of the following four sets: 

1. {𝑝: 𝑠2047 ⊨ 𝑝 and 𝑠1023 ⊨ 𝑝} 

2. {𝑝: 𝑠2047 ⊨ 𝑝 and 𝑠1023 ⊭ 𝑝} 

3. {𝑝: 𝑠2047 ⊭ 𝑝 and 𝑠1023 ⊨ 𝑝} 

4. {𝑝: 𝑠2047 ⊭ 𝑝 and 𝑠1023 ⊭ 𝑝} 

If Emily takes the bribe, she will have perfect accuracy with respect to all 

the propositions in class 1 (which are correctly believed to be true), and all the 

propositions in class 4 (which are correctly believed to be false). But she will be 

perfectly inaccurate with respect to all the propositions in class 2 (which are 

incorrectly believed to be false), and all the propositions in class 3 (which are 

incorrectly believed to be true). So she is perfectly accurate on half the 

propositions, and perfectly inaccurate on half of them, so her average inaccuracy is 

0.5 ⋅ 0 + 0.5 ⋅ 1 = 0.5. And that’s an enormous inaccuracy. It is, in fact, as 

inaccurate as one can possibly be while maintaining probabilistic coherence. 

Theorem-2: When inaccuracy over 𝒜 is measured using the Brier score, the least 

accurate credal states are those which assign credence 1 to some false atom of 𝒜. 

(The proof is in the appendix.) So taking the bribe is not a good deal, even by 

consequentialist lights. And that isn’t too surprising; taking the bribe makes Emily 
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have maximally inaccurate credences on half of the possible propositions about the 

children. 

So far we have followed Greaves in assuming that inaccuracy is measured by 

the quadratic, or Brier, rule. It turns out that we can drop that assumption. We 

actually only need some very weak conditions on accuracy rules to get the result 

that Greaves style bribes are bad deals, though the proof of this becomes a trifle 

more complicated. 

Let 𝒜 be an algebra of propositions generated by a partition of 2𝑁atoms 

𝑎1, . . . , 𝑎2𝑁. Suppose 𝑎1 is the truth, and consider two probability functions, 𝑃 and 

𝑄 defined in 𝒜. 𝑃assigns all its mass to the first 𝑁 atoms, so that 𝑃(𝑎𝑘) = 0 for all 

𝑘 > 𝑁. We also assume that 𝑃 assigns some positive probability to the true atom 

𝑎1. 𝑄assigns all its mass to the false atom 𝑎2𝑁. Note that this will be a good model 

of any case where an agent is offered a bribe of the form: drop the positive 

confidence you have in proposition 𝑝0, instead assign it credence 0, and you’ll be 

guaranteed a maximally accurate credence in 𝑗 other logically independent 

propositions 𝑝1, . . . , 𝑝𝑗. The only other assumptions needed to get the model to 

work are that 𝑝0 is actually true, and 𝑁 = 2𝑗. 

Imagine that the accuracy of a probability function 𝜋 over 𝒜 is measured by 

a proper scoring rule of the form 

𝐈(𝑎𝑛, 𝜋) = 2−2𝑁 ∑ 𝐢

𝑋∈𝒜

(𝑣𝑛(𝑋), 𝜋(𝑋)) 

where 𝑣𝑛(𝑋) is 𝑋s truth value when 𝑎𝑛 is the true atom, and i is a score that gives 

the accuracy of 𝜋(𝑋) in the event that 𝑋s truth value is 𝑣𝑛(𝑋). We shall assume 

that this score has the following properties. 

Truth Directedness 

The value of 𝐢(1, 𝑝) decreases monotonically as 𝑝 increases. The value of 𝐢(0, 𝑝) 

increases monotonically as 𝑝 decreases. 

Extensionality 

𝐢(𝑣𝑛(𝑋), 𝜋(𝑋)) is a function only of the truth-value and the probability; the 

identity of the proposition does not matter. 

Negation Symmetry 

𝐢(𝑣𝑛(¬𝑋), 𝜋(¬𝑋)) = 𝐢(𝑣𝑛(𝑋), 𝜋(𝑋)) for all 𝑥, 𝑛, 𝜋. 

Theorem-3: Given these assumptions, 𝑃’s accuracy strictly exceeds 𝑄’s. 

Again, the proof is in the appendix. 

Theorem-3 ensures that taking the deal that Greaves offers in Imps will 

reduce Emily’s accuracy relative to any proper scoring rule satisfying Truth 

Directedness, Extensionality and Negation Symmetry. To see why, think of Emily’s 
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credences as being defined over an algebra generated by the atoms ±𝐶0 ∧± 

𝐶1 ∧±𝐶2 ∧ … ∧±𝐶10, where it is understood that some 𝐶0 atom is true and all the 

¬𝐶0 atoms are false. Since Emily is convinced of 𝐶0 and believes that every other 

𝐶𝑛 has some chance of occurring, and since the various 𝐶𝑛 are independent of one 

another, her credence function cred1 will assigns a positive probability to each 𝐶0 

atom, including the true atom (whichever that might be). Now, let 𝑄 be a credence 

function that places all its weight on some false atom ¬𝐶0 ∧± 𝐶1 ∧±𝐶2 ∧ … ∧±𝐶10. 

Theorem-3 tells us that Emily’s cred1 is more accurate than 𝑄, and that this is true 

no matter which 𝐶0 atom is true or which ¬𝐶0 atom 𝑄 regards as certain. By taking 

the bribe Emily will guarantee the truth of 𝐶0 ∧ 𝐶1 ∧ … ∧ 𝐶10, but the cost will be 

that she must adopt the cred2 credences, which assign probability one to the false 

atom ¬𝐶0 ∧ 𝐶1 ∧ … ∧ 𝐶10. Extensionality ensures that any two credence functions 

that assign probability one to a false atom will have the same inaccuracy score, and 

that this score will not depend on which atom happens to be the true one. The 

upshot is that cred2 will have the same inaccuracy when Emily accepts the bribe as 

𝑄 does when she rejects it. Thus, since cred1 is more accurate than 𝑄, it is also 

more accurate than cred2, which means that Emily should reject the bribe in order 

to promote credal accuracy. 

We do not want to oversell this conclusion. Strictly speaking, we have only 

shown that consequentialists should reject epistemic bribes when doing so requires 

them to go from being confident in a truth to being certain of some maximally 

specific falsehood. This is a rather special situation, and there are nearby cases to 

which our results do not apply, and in which consequentialists may sanction bribe-

taking. For example, if Emily only has to cut her credence for 𝐶0 in half, say from 
1

2
to 

1

4
, to secure knowledge of 𝐶1 ∧ … ∧ 𝐶10, then Theorem-3 offers us no useful 

advice. Indeed, depending on the scoring rule and the nature of the bribe, we 

suspect that believers will often be able to improve accuracy by changing their 

credences in ways not supported by their evidence, especially when these changes 

affect the truth-values of believed propositions. The only thing we insist upon is 

that, in all such cases, credal accuracy should be measured over all relevant 

propositions, not just over a select salient few. But that’s something that is 

independently plausible. Perhaps it might be pragmatically justified to become 

more accurate on salient propositions at the expense of becoming very inaccurate 

over hard to state compounds of those propositions, but it is never epistemically 

justified. 

 



Accuracy and the Imps 

271 

2. Four Caveats 

2.1 Greaves’s Imps Argument May Work Against Some Forms of Consequentialism 

We said above that no consequentialist should accept Greaves’s setup of the Imps 

puzzle, since they should not accept an inaccuracy measure that ignores some kind 

of introduced inaccuracy. That means that, for all we have said, Greaves’s 

argument works against those consequentialists who do not agree with us over the 

suitability of target sets that are neither algebras or partitions. And, at least outside 

philosophy, some theorists do seem to disagree with us. 

For instance, it is common in meteorology to find theorists who measure the 

accuracy of rain forecasts over an 𝑛 day period by just looking at the square of the 

distance between the probability of rain and the truth about rain on each day. To 

pick an example almost literally at random, Mark Roulston defends the use of the 

Brier score, calculated just this way, as a measure of forecast accuracy.7 So 

Greaves’s target, while not including all consequentialists, does include many real 

theorists. 

That said, it seems there are more mundane reasons to not like this approach 

to measuring the accuracy of weather forecasts. Consider this simple case. Ankita 

and Bojan are issuing forecasts for the week that include probabilities of rain. They 

each think that there is a 0% chance of rain most days. But Ankita thinks there 

will be one short storm come through during the week, while Bojan issues a 0% 

chance of rain forecast for each day. Ankita thinks the storm is 75% likely to come 

on Wednesday, so there’s a 75% chance of rain that day, and 25% likely to come 

Thursday, so there’s a 25% chance of rain that day. 

As it happens, the storm comes on Thursday. So over the course of the week, 

Bojan’s forecast is more accurate than Ankita’s. Bojan is perfectly accurate on 6 

days, and off by 1 on Thursday. Ankita is perfectly accurate on 5 days, and gets an 

inaccuracy score of 0.752 = 0.5625 on Wednesday and Thursday, which adds up 

to more than Bojan’s inaccuracy. But this feels wrong. There is a crucial question 

that Ankita was right about and Bojan was wrong about, namely will there be a 

storm in the middle of the week. Ankita’s forecast only looks less accurate because 

we aren’t measuring accuracy with respect to this question. So even when we 

aren’t concerned with magical cases like Greaves’s, there is a good reason to 

measure accuracy comprehensively, i.e., with respect to an algebra or a partition. 

 

                                                        
7 Mark S. Roulston, “Performance Targets and the Brier Score,” Meterological Applications 14 

(2007): 185–194, http://doi.org/10.1002/met.21.  
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2.2 Separateness of Propositions 

There is a stronger version of the intuition behind the Imps case that we simply 

reject. The intuition is well expressed by Selim Berker. 

The more general point is this: when determining the epistemic status of a belief 

in a given proposition, it is epistemically irrelevant whether or not that belief 

conduces (either directly or indirectly) toward the promotion of true belief and 

the avoidance of false belief in other propositions beyond the one in question.8 

Let’s put that to the test by developing the Ankita and Bojan story a little 

further. They have decided to include, in the next week’s forecast, a judgment on 

the credibility of rain. Bojan thinks the evidence is rather patchy. And he has been 

reading Glenn Shafer, and thinks that when the evidence is patchy, credences in 

propositions and their negations need not add to one.9 So if 𝑝 is the proposition It 
will rain next week, Bojan has a credence of 0.4 in both 𝑝and ¬𝑝. 

Ankita thinks that’s crazy, and suggests that there must be something deeply 

wrong with the Shafer-based theory that Bojan is using. But Bojan is able to easily 

show that the common arguments against Shafer’s theory are blatantly question 

begging.10 So Ankita tries a new tack. She has been reading Joyce, from which she 

got the following idea.11 She argues that Bojan will be better off from the point of 

view of accuracy in having credence 0.5 in each of 𝑝 and ¬𝑝 than in having 

credence 0.4 in each. As it stands, one of Bojan’s credences will be off by 0.4, and 

the other by 0.6, for a Brier score of (0.42 + 0.62)/2 = 0.26, whereas switching 

would give him a Brier score of (0.52 + 0.52)/2 = 0.25. 

But Bojan resists. He offers two arguments in reply. 

First, he says, for all Ankita knows, one of his credences might be best 

responsive to the evidence. And it is wrong, always and everywhere, to change a 

credence away from one that is best supported by the evidence in order to facilitate 

an improvement in global accuracy. That, says Bojan, is a violation of the 

“separateness of propositions”.12 

                                                        
8 Berker, “Epistemic Teleology,” 365, emphasis in original. 
9 Glenn Shafer, A Mathematical Theory of Evidence (Princeton: Princeton University Press, 

2016).  
10 Patrick Maher, “Depragmatised Dutch Book Arguments,” Philosophy of Science 64 (1997): 

291–305, http://doi.org/10.1086/392552; Brian Weatherson, “Begging the Question and 

Bayesians,” Studies in the History and Philosophy of Science Part A 30 (1999): 687–697.  
11 James M. Joyce, “A Non-Pragmatic Vindication of Probabilism,” Philosophy of Science 65 

(1998): 575–603. 
12 Berker, “Epistemic Teleology.” 

http://doi.org/10.1086/392552
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Second, he says, even by Ankita’s accuracy-based lights, this is a bad idea. 

After all, he will be making one of his credences less accurate in order to make an 

improvement in global accuracy. And that’s again a violation of the separateness of 

propositions. It’s true that he won’t be making himself more inaccurate in one 

respect so as to secure accuracy in another, as in the bribes case. But he will be 

following advice that is motivated by the aim of becoming, in total, more accurate, 

at the expense of accuracy for some beliefs. 

We want to make two points in response. First, if the general point that 

Berker offers is correct, then these are perfectly sound replies by Bojan. Although 

Bojan is not literally in a bribe case, like Emily, he is being advised to change some 

credences because the change will make his overall credal state better, even if it 

makes it locally worse in one place. It does not seem to matter whether he can 

identify which credence gets made worse. Berker argues that the trade-offs that 

epistemic consequentialism makes the same mistake ethical consequentialism 

makes; it authorises inappropriate trade-offs. But in the ethical case, it doesn’t 

matter whether the agent can identify who is harmed by the trade-off. If it is 

wrong to harm an identifiable person for the greater good, it is wrong to harm 

whoever satisfies some description in order to produce the greater good. 

So if the analogy with anti-consequentialism in ethics goes through, Bojan is 

justified in rejecting Ankita’s advice. After all there is, according to Berker, a rule 

against making oneself doxastically worse in one spot for the gain of an overall 

improvement. And that’s what Bojan would do if he took Ankita’s advice. But, we 

say, Bojan is not justified in rejecting Ankita’s advice. In fact, Ankita’s advice is 

sound advice, and Bojan would do well to take it. So Berker’s general point is 

wrong. 

Our second point is a little more contentious. We suspect that if Bojan has a 

good reason to resist this move of Ankita’s, he has good reason to resist all attacks 

on his Shafer-based position. So if Berker’s general point is right, it means there is 

nothing wrong with Bojan’s anti-probabilist position. Now we haven’t argued for 

this; to do so would require going through all the arguments for probabilism and 

seeing whether they can be made consistent with Berker’s general point. But our 

suspicion is that none of them can be, since they are all arguments that turn on 

undesirable properties of global features of non-probabilistic credal states. So if 

Berker is right, probabilism is wrong, and we think it is not wrong. 
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2.3 Is this Consequentialism? 

So far we’ve acquiesed with the general idea that Greaves’s and Berker’s target 

should be called consequentialism. But there are reasons to be unhappy with this 

label. In general, a consequentialist theory allows agents to make things worse in 

the here and now, in return for future gains. A consequentialist about prudential 

decision making, in the sense of Hammond, will recommend exercise and 

medicine taking.13 And they won’t be moved by the fact that the exercise hurts and 

the medicine is foul-tasting. It is worth sacrificing the welfare of the present self 

for the greater welfare of later selves. 

Nothing like that is endorsed, as far as we can tell, by any of the existing 

‘epistemic consequentialists’. Certainly the argument that Ankita offers Bojan does 

not rely on this kind of reasoning. In particular, epistemic consequentialists do not 

say that it is better to make oneself doxastically worse off now in exchange for 

greater goods later. Something like that deal is offered to the reader of Descartes’s 

Meditations, but it isn’t as popular nowadays. 

Rather, the rule that is endorsed is Right now, have the credences that best 
track the truth! This isn’t clearly a form of consequentialism, since it really doesn’t 

care about the consequences of one’s beliefs. It does say that it is fine to make parts 

of one’s doxastic state worse in order to make the whole better. That’s what would 

happen if Bojan accepted Ankita’s advice. But that’s very different from doing 

painful exercise, or drinking unpleasant medicine. (Or, for that matter, to 

withdrawing belief in any number of truths.) 

When Greaves tries to flesh out epistemic consequentialism, she compares it 

to evidential and causal versions of prudential decision theory. But it seems like the 

right comparison might be to something we could call constitutive decision theory. 

The core rule, remember, is that agents should form credences that constitute 

being maximally accurate, not that cause them to be maximally accurate. 

The key point here is not the terminological one about who should be called 

consequentialist. Rather, it is that the distinction between causation and 

constitution is very significant here, and comparing epistemic utility theory to 

prudential utility theory can easily cause it to be lost. Put another way, we have no 

interest in defending someone who wants to defend a causal version of epistemic 

utility theory, and hence thinks it could be epistemically rational to be deliberately 

                                                        
13 Peter J. Hammond, “Consequentialist Foundations for Expected Utility,” Theory and Decision 

25 (1988): 25–78, http://doi.org/10.1007/BF00129168.  
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inaccurate now in order to be much more accurate tomorrow. We do want to 

defend the view that overall accuracy right now is a prime epistemic goal.14 

2.4 Other Bribes 

As already noted, we have not offered a general purpose response to bribery based 

objections to epistemic consequentialism. All we’ve shown is that some popular 

examples of this form of objection misfire, because they offer bribes that are bad by 

the consequentialists’ own lights. But there could be bribes that are immune to our 

objection. 

For example, imagine that Ankita has, right now, with credence 0.9 in 𝐷0, 

and 0.5 in 𝐷1. These are good credences to have, since she knows those are the 

chances of 𝐷0and 𝐷1. She’s then offered an epistemic bribe. If she changes her 

credence in 𝐷0 to 0.91, the chance of 𝐷1 will become 1, and she can have credence 

1 in 𝐷1. Taking this bribe will increase her accuracy. 

We could imagine the anti-consequentialist arguing as follows. 

1. If epistemic consequentialism is true, Ankita is epistemically justified in 

accepting this bribe. 

2. Ankita is not epistemically justified in accepting this bribe. 

3. So, epistemic consequentialism is not true. 

We’re not going to offer a reply to this argument here; that is a task for a 

much longer paper. There are some reasons to resist premise one. It isn’t clear that 

it is conceptually possible to accept the bribe. (It really isn’t clear that it is 

practically possible, but we’re not sure whether that’s a good reply on the part of 

the consequentialist.) And it isn’t clear that the argument for premise one properly 

respects the distinction between causation and constitution we described in the last 

section. 

Even if those arguments fail, the intuitive force of premise two is not as 

strong as the intuition behind Greaves’s, or Berker’s, anti-bribery intuitions. And 

that’s one of the main upshots of this paper. It’s commonly thought that for the 

consequentialist, in any field, everything has its price. The result we proved at the 

end of section one shows this isn’t true. It turns out that no good epistemic 

consequentialist should accept a bribe that leads them to believing an atomic 

proposition they have conclusive evidence is false, no matter how strong the 

                                                        
14 For further discussion of epistemic consequentialism, see James M. Joyce, “Accuracy, 

Ratification, and the Scope of Epistemic Consequentialism,” In Epistemic Consequentialism, eds. 

H. Kristoffer Ahlstrom-Vij and Jeffrey Dunn (Oxford: Oxford University Press, 2018), 240-266. 

https://doi.org/10.1093/oso/9780198779681.003.0011 
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inducements. Maybe one day there will be a convincing bribery based case that 

epistemic consequentialism is unacceptably corrupting of the epistemic soul. But 

that case hasn’t been made yet, because we’ve shown a limit on how corrupt the 

consequentialist can be. 

Appendix: Proofs of Theorems 1, 2, 3 

Theorem-1: Brier𝒜(𝐜, @) =
𝑁

4
Brier𝒮(𝐜, @) where 

Brier𝒮(𝐜, @) =
∑ (𝑠∈𝒮 @(𝑠) − 𝑐(𝑠))2

𝑁
 

To prove this we rely on a series of lemmas.15 

Let 𝒜 be the algebra generated by a finite partition of states 𝒮 =

{𝑠1, 𝑠2, … , 𝑠𝑁}. @ is a truth-value assignment for propositions in 𝒜. For simplicity, 

assume 𝑠1 is the true state, so that @(𝑠1) = 1 and @(𝑠𝑛) = 0 for 𝑛 > 1. The credence 

function c assigns values of 𝑐1, 𝑐2, … , 𝑐𝑁−1, 𝑐𝑁 to the elements of 𝒮, where 

∑ 𝑐𝑛
𝑁
𝑛=1 = 1 in virtue of coherence. 

It will be convenient to start by partitioning 𝒜 into four ”quadrants”. Let 𝐵 

range over all disjunctions with disjunctions drawn from ℬ = {𝑠2, 𝑠3, … , 𝑠𝑁−1} 

(including the empty disjunction, i.e., the logical contradition ⊥). Then, 𝒜 can be 

split into four disjoint parts: 

𝒜1 = {𝐵 ∨ 𝑠1 ∨ 𝑠𝑁: 𝐵 is a disjunction of the elements of ℬ} 

𝒜2 = {𝐵 ∨ 𝑠1: 𝐵 is a disjunction of the elements of ℬ} 

𝒜3 = {𝐵 ∨ 𝑠𝑁: 𝐵 is a disjunction of the elements of ℬ} 

𝒜4 = {𝐵: 𝐵 is a disjunction of the elements of ℬ} 

Notice that: 

(i) 𝒜1 ∪ 𝒜2contains all and only the true propositions in 𝒜. 

(ii) 𝒜3 ∪ 𝒜4contains all and only the false propositions in 𝒜. 

(iii) 𝒜1 and 𝒜4 are complementary sets, i.e., all elements of 𝒜4 are 

negations of elements of 𝒜1, and conversely. 

(iv) 𝒜2 and 𝒜3 are also complementary. 

(v) 𝒜1 ∪ 𝒜4 is the subalgebra of 𝒜 generated by {𝑠1 ∨ 𝑠𝑁, 𝑠2, 𝑠3, … , 𝑠𝑁−1}. 

(vi) All four quadrants have the same cardinality of 2𝑁−2. 

                                                        
15Alejandro Pérez Carballo gives a more direct and elegant proof of this result in a recent 

manuscript. We have kept our inefficient proof since its structure provides a guide for the proof 

of Theorem-3. 
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For an additive scoring rule 𝐈(𝐜, @) = ∑ 𝐢𝐴∈𝒜 (𝐜(𝐴), @(𝐴)) and 𝑗 = 1,2,3,4, 

define 𝐈𝑗 = ∑ 𝐢𝐴∈𝒜𝑗
(𝐜(𝐴), @(𝐴)), and note that 𝐈(𝐜, @) = 2−𝑁(𝐈1 + 𝐈2 + 𝐈3 + 𝐈4). 

Lemma-1.1: If 𝐈 is negation symmetric, i.e., if 𝐢(𝐜(¬𝐴), @(¬𝐴)) = 𝐢(𝐜(𝐴), @(𝐴)) 

for all 𝐴, then 𝐈1 = 𝐈4 and 𝐈2 = 𝐈3, and 𝐈(𝐜, @) = 21−𝑁(𝐈2 + 𝐈4). 

Proof: This is a direct consequence of the fact that 𝒜1 is complementary to 

𝒜4 and that 𝒜2 is complementary to 𝒜3 since this allows us to write 

𝐈1(𝐜, @) = ∑ 𝐢

𝐴∈𝒜1

(𝐜(𝐴), @(𝐴)) = ∑ 𝐢

𝐴∈𝒜1

(𝐜(¬𝐴), @(¬𝐴)) = 𝐈4(𝐜, @).

𝐈3(𝐜, @) = ∑ 𝐢

𝐴∈𝒜3

(𝐜(𝐴), @(𝐴)) = ∑ 𝐢

𝐴∈𝒜3

(𝐜(¬𝐴), @(¬𝐴)) = 𝐈2(𝐜, @). QED
 

Applying Lemma 1.1 with I = Brier we get 

(#) 𝐁𝐫𝐢𝐞𝐫𝒜(𝐜, @) = 21−𝑁 ∑ (

𝐴∈𝒜

@(𝐴) − 𝑐(𝐴))2

= 21−𝑁 ∑ [

𝐵

(1 − 𝑐1)2 − 2(1 − 𝑐1)𝐜(𝐵) + 𝐜(𝐵)2]
 

since 

𝐁𝐫𝐢𝐞𝐫2 = ∑ [

𝐵

1 − 𝐜(𝐵 ∨ 𝑠1)]2 = ∑ [

𝐵

(1 − 𝑐1) − 𝐜(𝐵)]2

= ∑ [

𝐵

(1 − 𝑐1)2 − 2(1 − 𝑐1)𝐜(𝐵) + 𝐜(𝐵)2]

𝐁𝐫𝐢𝐞𝐫4 = ∑ 𝐜

𝐵

(𝐵)2  

 

Lemma-1.2 

(∑ 𝑐𝑛

𝑁−1

𝑛=2

)2 = ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + 2 ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗  

Proof by induction. Easy. 

Lemma-1.3 

𝐁𝐫𝐢𝐞𝐫𝒮(𝐜, @) =
2

𝑁
[(1 − 𝑐1)2 + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 − (1 − 𝑐1)(∑ 𝑐𝑛

𝑁−1

𝑛=2

) + ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] 

Proof: Using the definition of the Brier score and the fact that 𝑠1 is true, we have 
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𝐁𝐫𝐢𝐞𝐫𝒮(𝐜, @) =
1

𝑁
[(1 − 𝑐1)2 + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + (1 − ∑ 𝑐𝑛

𝑁−1

𝑛=1

)2]

=
1

𝑁
[(1 − 𝑐1)2 + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + ((1 − 𝑐1) − ∑ 𝑐𝑛

𝑁−1

𝑛=2

)2]

=
1

𝑁
[(1 − 𝑐1)2 + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + (1 − 𝑐1)2 − 2(1 − 𝑐1) ∑ 𝑐𝑛

𝑁−1

𝑛=2

+ (∑ 𝑐𝑛

𝑁−1

𝑛=2

)2]

=
1

𝑁
[(1 − 𝑐1)2 + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + (1 − 𝑐1)2 − 2(1 − 𝑐1) ∑ 𝑐𝑛

𝑁−1

𝑛=2

  + ∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + 2 ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] (Lemma − 1.2)

 

Then grouping like terms and factoring out 2 yields the desired result. QED 

Lemma-1.4 

∑ 𝑐𝑛

𝑁−1

𝑛=2

= 23−𝑁 ∑ 𝐜

𝐵∈ℬ

(𝐵) 

Proof: For each 𝑛 = 2,3, … , 𝑁 − 1, each 𝑠𝑛 appears in half of the 2𝑁−2 disjunctions 

with disjuncts drawn from ℬ. As a result, each 𝑐𝑛 appears as a summand 2𝑁−3 

times among the sums that express the various 𝐜(𝐵). So ∑ 𝐜𝐵∈ℬ (𝐵) =

2𝑁−3 ∑ 𝑐𝑛
𝑁−1
𝑛=2 . QED 

Lemma-1.5 

∑ 𝐜

𝐵∈ℬ

(𝐵)2 = 2𝑁−3[∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] 

Proof: We proceed by induction starting with the first meaningful case of 𝑁 = 4, 

where calculation shows ∑ 𝐜𝐵 (𝐵)2 = (𝑐2 + 𝑐3)2 + 𝑐2
2 + 𝑐3

2 = 2[𝑐2
2 + 𝑐3

2 +

𝑐2𝑐3]. Now, assume the identity holds for disjunctions 𝐵 of elements of ℬ and show 

that it holds for disjunctions 𝐴 of elements of ℬ ∪ {𝑠𝑁}. 
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∑ 𝐜

𝐴

(𝐴)2 = ∑ 𝐜

𝐵

(𝐵)2 + ∑ 𝐜

𝐵

(𝐵 ∨ 𝑠𝑁)2

= ∑ 𝐜

𝐵

(𝐵)2 + ∑ (

𝐵

𝐜(𝐵)2 + 2𝑐𝑁𝐜(𝐵) + 𝑐𝑁
2)

= 2 ∑ 𝐜

𝐵

(𝐵)2 + 2𝑐𝑁 ∑ 𝐜

𝐵

(𝐵) + ∑ 𝑐

𝐵

𝑁
2

= 2 ⋅ 2𝑁−3 [∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] + 2𝑐𝑁 ∑ 𝐜

𝐵

(𝐵) + ∑ 𝑐

𝐵

𝑁
2 (

Induction 
Hypothesis

)

= 2𝑁−2 [∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] + 2𝑁−2𝑐𝑁 ∑ 𝑐𝑛

𝑁−1

𝑛=2

+ ∑ 𝑐

𝐵

𝑁
2 (Lemma − 1.4)

= 2𝑁−2 [∑ 𝑐

𝑁−1

𝑛=2

𝑛
2 + ∑ ∑ 𝑐𝑛

𝑁−1

𝑗>𝑛

𝑁−2

𝑛=2

𝑐𝑗] + 2𝑁−2𝑐𝑁 ∑ 𝑐𝑛

𝑁−1

𝑛=2

+ 2𝑁−2𝑐𝑁
2 Since |ℬ| = 2𝑁−2

= 2𝑁−2 [∑ 𝑐

𝑁

𝑛=2

𝑛
2 + ∑ ∑ 𝑐𝑛

𝑁

𝑗>𝑛

𝑁−1

𝑛=2

𝑐𝑗]  QED

 

Plugging the results of the last two lemmas into Lemma-1.3 produces a result of 

𝐁𝐫𝐢𝐞𝐫𝒮(𝐜, @) =
2

𝑁
[(1 − 𝑐1)2 + 23−𝑁 ∑ 𝐜

𝐵∈ℬ

(𝐵)2 − 23−𝑁(1 − 𝑐1) ∑ 𝐜

𝐵∈ℬ

(𝐵)]

=
2

𝑁
∑ [

𝐵∈ℬ

22−𝑁(1 − 𝑐1)2 + 23−𝑁𝐜(𝐵)2 − 23−𝑁(1 − 𝑐1)𝐜(𝐵)]

=
23−𝑁

𝑁
∑ [

𝐵∈ℬ

(1 − 𝑐1)2 + 2𝐜(𝐵)2 − 2(1 − 𝑐1)𝐜(𝐵)]

 

Comparing this to (#) we see that it is just 
𝑁

4
 times Brier𝒮(𝐜, @), as we aimed 

to prove. QED. 

Theorem-2. When inaccuracy over 𝒜 is measured using the Brier score, the least 

accurate credal states are those which assign credence 1 to some false atom of 𝒜. 

Proof: As before, suppose that @(𝑠1) = 1, and let c be a credence function that 

assigns credence 1 to some false atom 𝑠2, 𝑠3, . . . , 𝑠𝑁 of 𝒜. In light of Theorem-1 it 

suffices to show that 𝐁𝐫𝐢𝐞𝐫𝒮(𝐜, @) > 𝐁𝐫𝐢𝐞𝐫𝒮(𝐛, @) where b does not assign 

credence 1 to any false atom. Start by noting that for any credence function 𝜋 

defined on the atoms of 𝒜 one has 
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𝐁𝐫𝐢𝐞𝐫𝒮(𝜋, @) =
1

𝑁
[(1 − 𝜋1)2 + ∑ 𝜋

𝑁−1

𝑛=2

𝑛
2 + (1 − ∑ 𝜋

𝑁−1

𝑛=1

𝑛)2]

=
1

𝑁
[1 − 2𝜋1 + ∑ 𝜋

𝑁−1

𝑛=1

𝑛
2 + (1 − ∑ 𝜋

𝑁−1

𝑛=1

𝑛)2]

 

But, since each 𝜋𝑛 ∈ [0,1] is non-negative, it follows that 𝜋1 ≥ 𝜋1
2, 𝜋2 ≥

𝜋2
2, … , 𝜋𝑁 ≥ 𝜋𝑁

2 with the inequality strict in each case unless 𝜋𝑛 is either 1 or 0. 

This means that the sum ∑ 𝜋𝑁−1
𝑛=1 𝑛

2 + (1 − ∑ 𝜋𝑁−1
𝑛=1 𝑛)2 is less than or equal to 

1, with equality if and only if exactly one of the atoms 𝑠𝑛 is assigned probability 1 

(and the rest have probability zero). As a result, Brier𝒮(𝜋, @) ≤
2

𝑁
(1 − 𝜋1) with 

equality if and only if exactly one of the atoms 𝑠𝑛 is assigned probability 1. So, 

there are three relevant cases: 

(i) If 𝜋 assigns some false atom probability 1, Brier𝒮(𝜋, @) =
2

𝑁
⋅ (1 − 0) =

2

𝑁
. 

(ii) If 𝜋 assigns the true atom probability 1, Brier𝒮(𝜋, @) =
2

𝑁
⋅ (1 − 1) = 0. 

(iii) If 𝜋 does not assign any atom probability 1, Brier𝒮(𝜋, @) <
2

𝑁
⋅ (1 − 𝑐1) ≤

2

𝑁
. 

So, since c fits case (i) and b fits case (ii) or (iii) we have the desired result. 

QED 

Theorem-3: Let 𝒜 be an algebra of propositions generated by atoms 𝑎1, . . . , 𝑎2𝑁, 

where 𝑎1 is the truth. Let 𝑃 and 𝑄 be probability functions defined on 𝒜. 𝑃 

assigns all its mass to the first 𝑁 atoms, so that 𝑃(𝑎1 ∨ … ∨ 𝑎𝑁) = 1, and it also 

assigns some positive probability to 𝑎1. 𝑄 assigns all its mass to the false atom 𝑎2𝑁, 

so that 𝑄(𝑎2𝑁) = 1. Then, for any proper score I satisfying Truth-directedness, 

Extensionality and Negation Symmetry we have 𝐈(𝑣1, 𝑃) < 𝐈(𝑣1, 𝑄) where 𝑣1 is 

the truth-value assignment associated with 𝑎1 (i.e., where 𝑣1(𝑋) = 1 if and only if 

𝑎1 entails 𝑋). 

Proof: We can divide the algebra 𝒜 into four quadrants 

𝒜1 = {𝑋 ∈ 𝒜: 𝑎1 ⊨ 𝑋 and 𝑎2𝑁 ⊨ 𝑋}

𝒜2 = {𝑋 ∈ 𝒜: 𝑎1 ⊨ 𝑋 and 𝑎2𝑁 ⊭ 𝑋}

𝒜3 = {𝑋 ∈ 𝒜: 𝑎1 ⊭ 𝑋 and 𝑎2𝑁 ⊨ 𝑋}

𝒜4 = {𝑋 ∈ 𝒜: 𝑎1 ⊭ 𝑋 and 𝑎2𝑁 ⊭ 𝑋}

 

We know the following: 

 𝑄 is maximally accurate on 𝒜1 ∪ 𝒜4. Every proposition in 𝒜1 is true, and 𝑄 

assigns it a probability of 1. Every proposition in 𝒜4 is false, and 𝑄 assigns it a 

probability of 0. 

 𝑄 is maximally inaccurate on 𝒜2 ∪ 𝒜3. Every proposition in 𝒜2 is true, and 

𝑄 assigns it a probability of 0. Every proposition in 𝒜3 is false, and 𝑄 assigns it 



Accuracy and the Imps 

281 

a probability of 1. 

 𝑃 is maximally accurate on 𝒜3 ∪ 𝒜4. Every proposition in 𝒜3 ∪ 𝒜4 is false, 

and 𝑃 assigns it a probability of 0. 

 Each quadrant has 22𝑁−2 elements. 

Lemma-3.1: When 𝑎1 is true, the accuracy score of 𝑃 over the propositions in 𝒜1 

is identical to the accuracy score of 𝑃 over the propositions in  𝒜2. 

Proof: Note first that the function 𝐹: 𝒜1 → 𝒜2 that takes 𝑋 to 𝑋 ∧ ¬𝑎2𝑁 is a 

bijection of 𝒜1onto 𝒜2. Since every proposition in 𝒜1 ∪ 𝒜2 is true, we can then 

write the respective accuracy scores of 𝒜1 and 𝒜2 as 

𝐈𝒜1(𝑎1, 𝑃) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜1

(1, 𝑃(𝑋))

𝐈𝒜2(𝑎1, 𝑃) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜1

(1, 𝑃(𝑋 ∧ ¬𝑎2𝑁))
 

Note: 𝑋 ranges over 𝒜1 in both summations. But since 𝑃(𝑎2𝑁) = 0 we have 

𝑃(𝑋) = 𝑃(𝑋 ∧ 𝑎2𝑁) for each 𝑋in 𝒜1. Since I is extensional, this means that 

𝐈(1, 𝑃(𝑋)) = 𝐈(1, 𝑃(𝑋 ∧ 𝑎2𝑁)) for each 𝑋in 𝒜1. And, it follows that 𝐈𝒜1(𝑎1, 𝑃) and 

𝐈𝒜2(𝑎1, 𝑃) are identical. (Note that even if 𝑃(𝑎2𝑁) > 0, Truth-directedness entails 

that 𝐈𝒜1(𝑎1, 𝑃) < 𝐈𝒜2(𝑎1, 𝑃).) 

Lemma-3.2: When 𝑎1 is true, the accuracy score of 𝑄 over 𝒜2 is identical to the 

accuracy score of 𝑄 over  𝒜3. 

Proof: To see this, note first that the function 𝐺: 𝒜2 → 𝒜3 that takes 𝑋 to 𝐺(𝑋) =

¬𝑋 is a bijection (i.e., the negation of everything in 𝒜2 is in 𝒜3 and vice-versa). 

This, together with the fact that 𝒜2 contains only truths and 𝒜3 contains only 

falsehoods, lets us write 

𝐈𝒜2(𝑎1, 𝑄) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜2

(1, 𝑄(𝑋))

𝐈𝒜3(𝑎1, 𝑄) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜2

(0, 𝑄(¬𝑋))
 

But since I is negation symmetric, 𝐈(1, 𝑄(𝑋)) = 𝐈(0, 𝑄(¬𝑋)) for every 𝑋, 

which means that 𝐈𝒜2(𝑎1, 𝑄) = 𝐈𝒜3(𝑎1, 𝑄). (Note that this proof made no 

assumptions about 𝑄 except that it was a probability.) 

Lemma-3.3: If 𝑃(𝑎1) > 0, the accuracy score of 𝑃 over 𝒜2 is strictly less than the 

accuracy score of 𝑄 over 𝒜2. 

Proof: Since 𝑄(𝑋) = 0 everywhere on 𝒜2 we have 
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𝐈𝒜2(𝑎1, 𝑃) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜2

(1, 𝑃(𝑋))

𝐈𝒜2(𝑎1, 𝑄) = 22−2𝑁 ⋅ ∑ 𝐈

𝑋∈𝒜2

(1,0)
 

But, by Truth Directedness 𝐈(1,0) > 𝐈(1, 𝑃(𝑋)) since 𝑃(𝑎1) > 0 implies that 

𝑃(𝑋) > 0 for all 𝑋 ∈ 𝒜2. Thus 𝐈𝒜2(𝑎1, 𝑄) > 𝐈𝒜2(𝑎1, 𝑃). 

To complete the proof of the theorem we need only note that 

𝐈𝒜(𝑎1, 𝑃) =
𝐈𝒜1(𝑎1, 𝑃)

4
+

𝐈𝒜2(𝑎1, 𝑃)

4
(since 𝑃 is perfect on 𝒜3 ∪ 𝒜4)

=
𝐈𝒜2(𝑎1, 𝑃)

2
Lemma − 3.1

<
𝐈𝒜2(𝑎1, 𝑄)

2
Lemma − 3.3

=
𝐈𝒜2(𝑎1, 𝑄)

4
+

𝐈𝒜3(𝑎1, 𝑄)

4
Lemma − 3.2

= 𝐈𝒜(𝑎1, 𝑄) (since 𝑄 is perfect on 𝒜1 ∪ 𝒜4)

 

 

 

 


